找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John T. Tate Textbook 2015Latest edition Springer International Publishing Switzer

[復(fù)制鏈接]
樓主: Monsoon
11#
發(fā)表于 2025-3-23 13:26:50 | 只看該作者
Textbook 2015Latest editionnal numbers. It is this number theoretic question that is the main subject of .Rational Points on Elliptic Curves.. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation
12#
發(fā)表于 2025-3-23 15:14:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:58 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:31 | 只看該作者
Complex Multiplication,d to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we need, and you can look in any basic algebra text such as [14, 23, 26] for the proofs and additional background material.
15#
發(fā)表于 2025-3-24 04:42:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:51:36 | 只看該作者
Points of Finite Order, study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation . and that the point at infinity . is taken to be the zero element for the group law.
17#
發(fā)表于 2025-3-24 13:57:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:53 | 只看該作者
Integer Points on Cubic Curves,), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
19#
發(fā)表于 2025-3-24 22:53:00 | 只看該作者
Complex Multiplication,ean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter 2 So we will need to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we
20#
發(fā)表于 2025-3-24 23:42:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹山县| 抚顺县| 武陟县| 崇阳县| 镇平县| 广东省| 彭州市| 交口县| 五莲县| 江门市| 通辽市| 高邮市| 永川市| 江陵县| 丰台区| 兴仁县| 尉氏县| 达日县| 云龙县| 正安县| 莱州市| 鸡东县| 深泽县| 安宁市| 象山县| 稻城县| 建湖县| 理塘县| 乌鲁木齐县| 合作市| 虞城县| 阿拉尔市| 新丰县| 宝坻区| 宣恩县| 奉节县| 乌兰浩特市| 贵南县| 佛山市| 墨竹工卡县| 西平县|