找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Randomization and Approximation Techniques in Computer Science; Second International Michael Luby,José D. P. Rolim,Maria Serna Conference p

[復制鏈接]
樓主: SPARK
31#
發(fā)表于 2025-3-26 23:17:46 | 只看該作者
32#
發(fā)表于 2025-3-27 04:20:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:37 | 只看該作者
34#
發(fā)表于 2025-3-27 11:38:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:52:39 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:36 | 只看該作者
Talagrand’s Inequality and Locality in Distributed Computing analysis of distributed randomized algorithms that work in the locality paradigm. Two features of the inequality are crucially used in the analysis: first, very refined control on the influence of the underlying variables can be exercised to get signicantly stronger bounds by exploiting the non-uni
37#
發(fā)表于 2025-3-27 23:16:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:15:28 | 只看該作者
Combinatorial Linear Programming: Geometry Can Helppolynomial on all actual linear programs in the class. In contrast, the subexponential analysis is known to be best possible for general instances in . Thus, we identify a “geometric” property of linear programming that goes beyond all abstract notions previously employed in generalized linear progr
39#
發(fā)表于 2025-3-28 08:55:19 | 只看該作者
A Note on Bounding the Mixing Time by Linear ProgrammingThe linear minimization program we construct has one variable per state and (the square of) its solution is an upper bound on the mixing time. The proof of this theorem uses the coupling technique and a generalization of the distance function commonly used in this context. Explicit solutions are obt
40#
發(fā)表于 2025-3-28 11:41:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东乡族自治县| 乌兰浩特市| 嵊泗县| 临夏市| 孟津县| 阜新| 阳西县| 喀喇沁旗| 绥江县| 准格尔旗| 闸北区| 溧水县| 连山| 蒙城县| 略阳县| 平陆县| SHOW| 姚安县| 崇信县| 九龙城区| 灵宝市| 宁河县| 青州市| 内丘县| 衡水市| 新郑市| 昌平区| 定西市| 武义县| 咸阳市| 鸡西市| 临猗县| 衡水市| 北宁市| 胶州市| 郸城县| 元谋县| 横山县| 锦州市| 大名县| 简阳市|