找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Walks in the Quarter-Plane; Algebraic Methods, B Guy Fayolle,Roudolf Iasnogorodski,Vadim Malyshev Book 19991st edition Springer-Verl

[復制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 11:31:18 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:40 | 只看該作者
Book 19991st editionkhotski, Hilbert, Plemelj, Carleman, Wiener, Hopf. This one-dimensional theory took its final form in the works of Krein, Muskhelishvili, Gakhov, Gokhberg, etc. The third point, and the related probabilistic problems, have been thoroughly investigated by Spitzer, Feller, Baxter, Borovkov, Cohen, etc
13#
發(fā)表于 2025-3-23 21:04:47 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:09 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:37 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:39 | 只看該作者
The Case of a Finite Group,functions .,.,.. are polynomials. In this case, we are able to characterize completely the solutions of the basic functional equation, and also to give necessary and sufficient conditions for these solutions to be rational or algebraic.
17#
發(fā)表于 2025-3-24 14:34:45 | 只看該作者
Solution in the Case of an Arbitrary Group,e group. Hereafter, we shall obtain the complete solution when the order of the group of the random walk is arbitrary, i.e. possibly infinite. The main idea consists in the reduction to a factorization problem on a curve in the complex plane. Generally one comes up first with integral equations and,
18#
發(fā)表于 2025-3-24 18:01:24 | 只看該作者
The Genus 0 Case, in Chapter 2 and exactly five situations have been found, described by the relations (2.3.5) to (2.3.8). In fact, since (2.3.6) and (2.3.8) are equivalent up to a permutation of the variables . and ., we are left with four significantly different cases, which will be treated separately.
19#
發(fā)表于 2025-3-24 22:14:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄱阳县| 兴安盟| 福州市| 义马市| 平潭县| 昌图县| 溧阳市| 南部县| 通渭县| 顺义区| 礼泉县| 平邑县| 河西区| 平山县| 洪江市| 锡林浩特市| 北票市| 偃师市| 四川省| 屏东市| 柳州市| 军事| 海盐县| 佛坪县| 兴国县| 电白县| 天水市| 洮南市| 炎陵县| 丹巴县| 太谷县| 九江市| 永兴县| 广安市| 富民县| 石楼县| 通辽市| 三都| 景东| 孟津县| 涡阳县|