找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Trees; An Interplay between Michael Drmota Book 2009 Springer-Verlag Vienna 2009 Combinatorics.Graph.Graph theory.Probability.Random

[復(fù)制鏈接]
樓主: invigorating
21#
發(fā)表于 2025-3-25 07:10:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:59:47 | 只看該作者
Planar Graphs,nalysis. From this point of view outerplanar graphs and series-parallel graphs — these are two subclasses of planar graphs that we will study first — are more tree-like than the class of all planar graphs, since the singularity structure of the corresponding generating functions is of square root ty
25#
發(fā)表于 2025-3-25 20:20:35 | 只看該作者
Recursive Algorithms and the Contraction Method,the solutions of the subproblems appropriately. If this idea is iteratively (or recursively) applied then one speaks of a . and, moreover, these kinds of algorithms give rise to a (hidden) tree structure.
26#
發(fā)表于 2025-3-26 01:41:06 | 只看該作者
Classes of Random Trees,unting problems. In particular we distinguish between rooted and unrooted, plane and non-plane, and labelled and unlabelled trees. It is also possible to modify the counting procedure by putting certain weights on trees, for example, by using the degree distribution.
27#
發(fā)表于 2025-3-26 05:27:01 | 只看該作者
Generating Functions,y can be used to encode the distribution of random variables that are related to counting problems and, hence, asymptotic methods can be applied to obtain probabilistic limit theorems like central limit theorems.
28#
發(fā)表于 2025-3-26 11:15:20 | 只看該作者
Advanced Tree Counting,las for basic tree classes and asymptotic formulas for simply generated trees and Pólya trees. However, the main goal is to show that certain tree parameters that behave . (in a proper sense) satisfy a central limit theorem in a natural probabilistic setting.
29#
發(fā)表于 2025-3-26 15:51:32 | 只看該作者
30#
發(fā)表于 2025-3-26 19:17:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闻喜县| 囊谦县| 宝清县| 平顺县| 疏勒县| 赤城县| 泉州市| 屯留县| 土默特左旗| 郸城县| 玉树县| 景洪市| 盐津县| 永州市| 青田县| 桂平市| 南城县| 永定县| 青海省| 安庆市| 旬邑县| 河西区| 阳新县| 新和县| 安化县| 义乌市| 金门县| 湖南省| 潮州市| 科技| 大同县| 土默特右旗| 固安县| 大名县| 榆林市| 离岛区| 仙居县| 江津市| 哈尔滨市| 樟树市| 台中县|