找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media; Courses Held at the D. R. Axelrad,J.

[復制鏈接]
查看: 38446|回復: 35
樓主
發(fā)表于 2025-3-21 20:02:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media
副標題Courses Held at the
編輯D. R. Axelrad,J. W. Provan
視頻videohttp://file.papertrans.cn/822/821088/821088.mp4
叢書名稱CISM International Centre for Mechanical Sciences
圖書封面Titlebook: Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media; Courses Held at the  D. R. Axelrad,J.
出版日期Book 1971
關鍵詞Deformation; Structured Media; dynamics; mechanics; research; thermodynamics
版次1
doihttps://doi.org/10.1007/978-3-7091-2936-4
isbn_softcover978-3-211-81175-7
isbn_ebook978-3-7091-2936-4Series ISSN 0254-1971 Series E-ISSN 2309-3706
issn_series 0254-1971
copyrightSpringer-Verlag Wien 1971
The information of publication is updating

書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media影響因子(影響力)




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media影響因子(影響力)學科排名




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media網(wǎng)絡公開度




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media網(wǎng)絡公開度學科排名




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media被引頻次




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media被引頻次學科排名




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media年度引用




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media年度引用學科排名




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media讀者反饋




書目名稱Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:34:29 | 只看該作者
Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured MediaCourses Held at the
板凳
發(fā)表于 2025-3-22 02:39:54 | 只看該作者
地板
發(fā)表于 2025-3-22 05:04:07 | 只看該作者
5#
發(fā)表于 2025-3-22 10:45:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:54 | 只看該作者
Random Theory of Deformation of Structured Media. Thermodynamics of Deformation in Structured Media978-3-7091-2936-4Series ISSN 0254-1971 Series E-ISSN 2309-3706
7#
發(fā)表于 2025-3-22 20:45:17 | 只看該作者
0254-1971 Overview: 978-3-211-81175-7978-3-7091-2936-4Series ISSN 0254-1971 Series E-ISSN 2309-3706
8#
發(fā)表于 2025-3-22 23:56:52 | 只看該作者
Random Theory of Deformation of Structured Media,ss of structured media can be described. The first theory considering the presence of a microstructure known as the theory of “oriented media” is due to E. and F. Cosserat[1]. In this theory the deformation is described in terms of a position vector of an arbitrary point in the medium with respect t
9#
發(fā)表于 2025-3-23 02:16:43 | 只看該作者
10#
發(fā)表于 2025-3-23 06:35:08 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
济阳县| 五峰| 上犹县| 伊宁市| 淮滨县| 临桂县| 同心县| 浠水县| 乐平市| 疏勒县| 大余县| 利川市| 聂拉木县| 汾西县| 攀枝花市| 普陀区| 重庆市| 顺平县| 安阳县| 施甸县| 台湾省| 汕头市| 通江县| 聂拉木县| 汽车| 侯马市| 长泰县| 青田县| 淮北市| 岳普湖县| 双城市| 曲阜市| 陆良县| 泽普县| 泸州市| 浪卡子县| 贡觉县| 澎湖县| 花莲县| 福贡县| 平武县|