找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Matrix Theory with an External Source; Edouard Brézin,Shinobu Hikami Book 2016 The Author(s) 2016 Random matrix theory.Gaussian ran

[復(fù)制鏈接]
樓主: 筆記
11#
發(fā)表于 2025-3-23 10:01:38 | 只看該作者
12#
發(fā)表于 2025-3-23 15:40:07 | 只看該作者
Open Intersection Numbers,The intersection numbers are defined on the moduli space of Riemann surface with .-marked points and genus .. When Riemann surface is cut and has boundary, the open intersection numbers appear. There appear open strings which touch to the boundary.
13#
發(fā)表于 2025-3-23 18:28:24 | 只看該作者
,Gromov–Witten Invariants, P, Model,The intersection numbers of .-spin curves is a simple example of more general Gromov–Witten invariants, where the manifold . is a point.
14#
發(fā)表于 2025-3-24 01:42:57 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:39:14 | 只看該作者
2197-1757 of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..978-981-10-3315-5978-981-10-3316-2Series ISSN 2197-1757 Series E-ISSN 2197-1765
17#
發(fā)表于 2025-3-24 11:18:14 | 只看該作者
text, Immigration Processes and Health in the U.S.: A Brief History, Alternative and Complementary Medicine, Culture-Specific Diagnoses, Health Determinants, Occupational and Environmental Health, Methodologica978-1-4419-5659-0
18#
發(fā)表于 2025-3-24 18:53:17 | 只看該作者
Book 2016r characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries..
19#
發(fā)表于 2025-3-24 20:47:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:26 | 只看該作者
Intersection Numbers of Curves,chy. Kontsevich (Commun Math Phys 147:1–23, 1992, [89]) has proved this conjecture with the use of an Airy matrix model. In addition it has been realized that matrix models of this type are examples of an exact closed/open strings duality (Gaiotto and Rastelli, JHEP 07:053, 2005, [63]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
健康| 遵义市| 象州县| 女性| 靖州| 鄂尔多斯市| 喜德县| 宣化县| 鹤山市| 晋中市| 延安市| 宝清县| 五寨县| 阳城县| 遂川县| 萨嘎县| 长春市| 青河县| 鹤壁市| 共和县| 津市市| 米脂县| 仪征市| 顺平县| 阿拉善右旗| 苏尼特左旗| 隆昌县| 和田市| 黎城县| 衢州市| 南丰县| 襄城县| 桂阳县| 安图县| 双鸭山市| 孝感市| 白朗县| 连州市| 蓬安县| 十堰市| 鄂托克前旗|