找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Random Forests with R; Robin Genuer,Jean-Michel Poggi Book 2020 Springer Nature Switzerland AG 2020 Random forests.Machine learning.Classi

[復(fù)制鏈接]
查看: 26873|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:36:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Random Forests with R
編輯Robin Genuer,Jean-Michel Poggi
視頻videohttp://file.papertrans.cn/822/821050/821050.mp4
概述Offers an application-oriented guide to CART trees and random forests.Covers a range of practical issues, and provides real-life examples and R codes.Particularly valuable for statisticians wishing to
叢書(shū)名稱Use R!
圖書(shū)封面Titlebook: Random Forests with R;  Robin Genuer,Jean-Michel Poggi Book 2020 Springer Nature Switzerland AG 2020 Random forests.Machine learning.Classi
描述.This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quantitative explanatory variables together, without pre-processing. Moreover, they can be used to process standard data for which the number of observations is higher than the number of variables, while also performing very well in the high dimensional case, where the number of variables is quite large in comparison to the number of observations. Consequently, they are now among the preferred methods in the toolbox of statisticians and data scientists.?The book is primarily intended for students in academic fields such as statistical education, but also for practitioners in statistics and machine learning. A scientific undergraduate degree is quite sufficient to take full advantage of the concepts, methods, and tools discussed. In terms of comp
出版日期Book 2020
關(guān)鍵詞Random forests; Machine learning; Classification; Regression; Nearest neighbor; Variable selection; High d
版次1
doihttps://doi.org/10.1007/978-3-030-56485-8
isbn_softcover978-3-030-56484-1
isbn_ebook978-3-030-56485-8Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Random Forests with R影響因子(影響力)




書(shū)目名稱Random Forests with R影響因子(影響力)學(xué)科排名




書(shū)目名稱Random Forests with R網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Random Forests with R網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Random Forests with R被引頻次




書(shū)目名稱Random Forests with R被引頻次學(xué)科排名




書(shū)目名稱Random Forests with R年度引用




書(shū)目名稱Random Forests with R年度引用學(xué)科排名




書(shū)目名稱Random Forests with R讀者反饋




書(shū)目名稱Random Forests with R讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:49:26 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:51 | 只看該作者
5#
發(fā)表于 2025-3-22 09:59:17 | 只看該作者
https://doi.org/10.1007/978-3-030-56485-8Random forests; Machine learning; Classification; Regression; Nearest neighbor; Variable selection; High d
6#
發(fā)表于 2025-3-22 15:47:44 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:27 | 只看該作者
2197-5736 d R codes.Particularly valuable for statisticians wishing to.This book offers an application-oriented guide to random forests: a statistical learning method extensively used in many fields of application, thanks to its excellent predictive performance, but also to its flexibility, which places few r
8#
發(fā)表于 2025-3-22 21:12:22 | 只看該作者
Book 2020s to its excellent predictive performance, but also to its flexibility, which places few restrictions on the nature of the data used. Indeed, random forests can be adapted to both supervised classification problems and regression problems. In addition, they allow us to consider qualitative and quant
9#
發(fā)表于 2025-3-23 03:06:54 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴南区| 徐闻县| 沙河市| 蒙城县| 南丰县| 扬州市| 涪陵区| 永仁县| 民勤县| 保康县| 永兴县| 吉木乃县| 靖江市| 左权县| 抚远县| 泸水县| 噶尔县| 紫阳县| 渝中区| 香港| 高雄市| 平遥县| 始兴县| 莱州市| 鸡东县| 合作市| 辉县市| 浙江省| 寿光市| 黄大仙区| 萝北县| 静安区| 都兰县| 襄城县| 衡南县| 榆社县| 怀远县| 顺义区| 安乡县| 兰州市| 双柏县|