找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ramanujan‘s Lost Notebook; Part II George E. Andrews,Bruce C. Berndt Book 2009 Springer-Verlag New York 2009 Invariant.approximation.ellipt

[復(fù)制鏈接]
樓主: 不同
41#
發(fā)表于 2025-3-28 16:30:48 | 只看該作者
42#
發(fā)表于 2025-3-28 20:44:29 | 只看該作者
Partial Theta Functions,from the classical Jacobi theta function ., we have chosen to name the series in (6.1.1) .. We have chosen the designation partial theta functions, in contrast with L.J. Rogers’s “false theta functions” discussed in Chapters 9 and 11 of our first volume [31, pp. 227–239, 256–259].
43#
發(fā)表于 2025-3-28 23:28:23 | 只看該作者
Special Identities,The first four identities to be examined have previously been proved [20] by relating them to the theory of Durfee rectangles [13]. We provide an alternative development based on functional equations in Section 7.2.
44#
發(fā)表于 2025-3-29 06:17:52 | 只看該作者
45#
發(fā)表于 2025-3-29 10:11:49 | 只看該作者
,Ramanujan’s Cubic Analogue of the Classical Ramanujan–Weber Class Invariants, elegant values of ., for . ≡ 1 (mod 8). The quantity . can be thought of as an analogue in Ramanujan’s cubic theory of elliptic functions [57, Chapter 33] of the classical Ramanujan–Weber class invariant Gn, which is defined by . where . and . is any positive rational number.
46#
發(fā)表于 2025-3-29 13:20:15 | 只看該作者
47#
發(fā)表于 2025-3-29 15:53:57 | 只看該作者
48#
發(fā)表于 2025-3-29 22:05:50 | 只看該作者
,Eisenstein Series and Approximations to π, To the right of each integer, Ramanujan recorded a linear equation in .. and ... Although Ramanujan did not indicate the definitions of . and ., we can easily (and correctly) ascertain that . and . are the Eisenstein series . and ., where .. To the right of each equation in .. and .., Ramanujan ent
49#
發(fā)表于 2025-3-30 01:57:44 | 只看該作者
iscusses q-series, Eisenstein series, and theta functions.InThis is the second of approximately four volumes that the authors plan to write in their examination of all the claims made by S. Ramanujan in The Lost Notebook and Other Unpublished Papers. This volume, published by Narosa in 1988, contain
50#
發(fā)表于 2025-3-30 07:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼图壁县| 翁牛特旗| 托克逊县| 神木县| 朝阳市| 无极县| 张家口市| 莫力| 山阳县| 崇州市| 团风县| 会泽县| 陆良县| 乾安县| 治多县| 乌拉特前旗| 萍乡市| 内乡县| 永和县| 禹城市| 太谷县| 长岛县| 隆昌县| 昌图县| 昌邑市| 肥城市| 祁连县| 黔江区| 白河县| 刚察县| 南皮县| 当涂县| 尼木县| 怀柔区| 盘山县| 彩票| 潼关县| 彰武县| 西平县| 西吉县| 车致|