找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Radon Integrals; An abstract approach Bernd Anger,Claude Portenier Book 1992 Springer Science+Business Media New York 1992 distribution.int

[復(fù)制鏈接]
查看: 37771|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:00:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Radon Integrals
副標題An abstract approach
編輯Bernd Anger,Claude Portenier
視頻videohttp://file.papertrans.cn/821/820914/820914.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Radon Integrals; An abstract approach Bernd Anger,Claude Portenier Book 1992 Springer Science+Business Media New York 1992 distribution.int
描述In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the v
出版日期Book 1992
關(guān)鍵詞distribution; integral; integration; measure; measure theory; stability
版次1
doihttps://doi.org/10.1007/978-1-4612-0377-3
isbn_softcover978-1-4612-6733-1
isbn_ebook978-1-4612-0377-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

書目名稱Radon Integrals影響因子(影響力)




書目名稱Radon Integrals影響因子(影響力)學科排名




書目名稱Radon Integrals網(wǎng)絡(luò)公開度




書目名稱Radon Integrals網(wǎng)絡(luò)公開度學科排名




書目名稱Radon Integrals被引頻次




書目名稱Radon Integrals被引頻次學科排名




書目名稱Radon Integrals年度引用




書目名稱Radon Integrals年度引用學科排名




書目名稱Radon Integrals讀者反饋




書目名稱Radon Integrals讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:49 | 只看該作者
Bernd Anger,Claude Portenierve and com- understanding, preventing, diagnosing and treating psychological, cognitive, emotional, developmental, prehensive resource that provides up-to-date informa- tion on a broad array of problems and issues related to behavioral, and family problems of children. Of partic- children, adolescen
地板
發(fā)表于 2025-3-22 06:38:08 | 只看該作者
Bernd Anger,Claude Portenierve and com- understanding, preventing, diagnosing and treating psychological, cognitive, emotional, developmental, prehensive resource that provides up-to-date informa- tion on a broad array of problems and issues related to behavioral, and family problems of children. Of partic- children, adolescen
5#
發(fā)表于 2025-3-22 10:33:51 | 只看該作者
0743-1643 lent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades,
6#
發(fā)表于 2025-3-22 15:45:46 | 只看該作者
Book 1992ical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in partic
7#
發(fā)表于 2025-3-22 19:35:23 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:16 | 只看該作者
General Integration Theory,The theory of integration is permeated by the interaction of two different structures, the canonical order and multiplication in the extended real line . and the canonical conoid structure, i.e. additional and multiplication by positive scalars, in
9#
發(fā)表于 2025-3-23 04:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文水县| 宣汉县| 塘沽区| 全椒县| 桐城市| 隆昌县| 安阳县| 益阳市| 涟水县| 肃南| 巴林右旗| 蒲城县| 柳江县| 广平县| 定西市| 敖汉旗| 信丰县| 南丰县| 昌江| 崇左市| 鹤山市| 辰溪县| 铁力市| 平塘县| 安宁市| 长岛县| 普宁市| 如东县| 遵义市| 若尔盖县| 滁州市| 五峰| 渝中区| 阳山县| 大渡口区| 肃宁县| 海兴县| 重庆市| 建湖县| 德昌县| 同德县|