找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Radial Basis Function Networks 2; New Advances in Desi Robert J. Howlett,Lakhmi C. Jain Book 2001 Springer-Verlag Berlin Heidelberg 2001 Ne

[復(fù)制鏈接]
查看: 34604|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:34:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Radial Basis Function Networks 2
副標(biāo)題New Advances in Desi
編輯Robert J. Howlett,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/821/820412/820412.mp4
概述Contains a wide range of applications in the laboratory and case studies describing current use.Overall view of the methods used for the genetic optimization of artificial neural networks and presenta
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: Radial Basis Function Networks 2; New Advances in Desi Robert J. Howlett,Lakhmi C. Jain Book 2001 Springer-Verlag Berlin Heidelberg 2001 Ne
描述The Radial Basis Function (RBF) network has gained in popularity in recent years. This is due to its desirable properties in classification and functional approximation applications, accompanied by training that is more rapid than that of many other neural-network techniques. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of applications areas, for example, robotics, biomedical engineering, and the financial sector. The two-title series Theory and Applications of Radial Basis Function Networks provides a comprehensive survey of recent RBF network research. This volume, New Advances in Design, contains a wide range of applications in the laboratory and case-studies describing current use. The sister volume to this one, Recent Developments in Theory and Applications, covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms. The combination of the two volumes will prove extremely useful to practitioners in the field, engineers, research
出版日期Book 2001
關(guān)鍵詞Neural Networks; RBF; Radial Basis Function; algorithms; biomedical engineering; classification; cognition
版次1
doihttps://doi.org/10.1007/978-3-7908-1826-0
isbn_softcover978-3-7908-2483-4
isbn_ebook978-3-7908-1826-0Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書目名稱Radial Basis Function Networks 2影響因子(影響力)




書目名稱Radial Basis Function Networks 2影響因子(影響力)學(xué)科排名




書目名稱Radial Basis Function Networks 2網(wǎng)絡(luò)公開度




書目名稱Radial Basis Function Networks 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Radial Basis Function Networks 2被引頻次




書目名稱Radial Basis Function Networks 2被引頻次學(xué)科排名




書目名稱Radial Basis Function Networks 2年度引用




書目名稱Radial Basis Function Networks 2年度引用學(xué)科排名




書目名稱Radial Basis Function Networks 2讀者反饋




書目名稱Radial Basis Function Networks 2讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:56:06 | 只看該作者
Book 2001onal approximation applications, accompanied by training that is more rapid than that of many other neural-network techniques. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF net
板凳
發(fā)表于 2025-3-22 02:17:25 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:59 | 只看該作者
Using Radial Basis Function Networks for Hand Gesture Recognition,ognition. This chapter furthermore applies evolutionary algorithms to fine tune pre-learned radial basis function networks. After optimization, the network achieves a recognition rate of up to 100%, and is therefore comparable or even better than that of back-propagation networks.
5#
發(fā)表于 2025-3-22 11:43:52 | 只看該作者
6#
發(fā)表于 2025-3-22 13:28:09 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:27 | 只看該作者
9#
發(fā)表于 2025-3-23 04:10:15 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
小金县| 卫辉市| 嘉禾县| 敦化市| 彰武县| 河南省| 西吉县| 霍山县| 扎鲁特旗| 西林县| 桂阳县| 财经| 和政县| 周至县| 靖边县| 璧山县| 福安市| 唐山市| 洪雅县| 井冈山市| 古交市| 盐池县| 新竹市| 安龙县| 东宁县| 名山县| 霍州市| 筠连县| 湟中县| 长葛市| 宝坻区| 寿阳县| 丰城市| 景谷| 诏安县| 太白县| 阿荣旗| 会昌县| 麻江县| 喀什市| 阿荣旗|