找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems; Design, Analysis and Jinkun Liu Book 2013 Tsinghua University Pr

[復(fù)制鏈接]
樓主: 母牛膽小鬼
31#
發(fā)表于 2025-3-27 00:17:37 | 只看該作者
Radial Basis Function (RBF) Neural Network Control for Mechanical SystemsDesign, Analysis and
32#
發(fā)表于 2025-3-27 03:45:11 | 只看該作者
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems978-3-642-34816-7
33#
發(fā)表于 2025-3-27 05:20:03 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:18 | 只看該作者
Book 2013aptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control d
35#
發(fā)表于 2025-3-27 14:35:33 | 只看該作者
Introduction,ol. To illustrate the attendant features of robustness and performance specification of RBF adaptive control, a typical RBF adaptive controller design for an example system is given. A concrete analysis, simulation examples, and Matlab programs are given too.
36#
發(fā)表于 2025-3-27 18:38:50 | 只看該作者
Adaptive RBF Neural Network Control, control based on neural approximation with unknown parameter, and a direct robust adaptive control. For above control laws, the adaptive law is designed based on the Lyapunov stability theory, the closed-loop system stability can be achieved.
37#
發(fā)表于 2025-3-28 01:39:16 | 只看該作者
Adaptive RBF Control Based on Global Approximation,ol law, adaptive neural network control law with sliding mode robust term, and adaptive neural network control law with HJI. The closed-loop system stability can be achieved based on the Lyapunov stability.
38#
發(fā)表于 2025-3-28 04:04:34 | 只看該作者
39#
發(fā)表于 2025-3-28 09:06:51 | 只看該作者
40#
發(fā)表于 2025-3-28 10:47:17 | 只看該作者
Imbalanced Classification for Big Data, of data has attracted more and more researchers to address the topic of Big Data analytics. The main difference between addressing Big Data applications and carrying out traditional DM tasks is scalability. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basical
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘潭县| 长沙县| 台南县| 汝州市| 刚察县| 临安市| 德化县| 呼和浩特市| 怀柔区| 宝兴县| 资源县| 永兴县| 集贤县| 西和县| 京山县| 新巴尔虎左旗| 于田县| 汕尾市| 香河县| 阳曲县| 凉山| 大冶市| 尉犁县| 上饶市| 且末县| 沙雅县| 和静县| 安塞县| 蒙城县| 临桂县| 河曲县| 乳源| 五原县| 桂东县| 顺昌县| 新化县| 涞源县| 双辽市| 松江区| 新蔡县| 炉霍县|