找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ROBOT2022: Fifth Iberian Robotics Conference; Advances in Robotics Danilo Tardioli,Vicente Matellán,Lino Marques Conference proceedings 202

[復制鏈接]
樓主: 并排一起
51#
發(fā)表于 2025-3-30 11:58:53 | 只看該作者
Evaluating Cognitive Odour Source Localisation Strategies in?Natural Water Streamsfunctions have been proposed to assist in the decision-making process of cognitive strategies, but it is not yet clear which of these information metrics performs better in the OSL process. Additionally, most of these works have only been validated in simulation or in small controllable conditions s
52#
發(fā)表于 2025-3-30 13:25:11 | 只看該作者
53#
發(fā)表于 2025-3-30 19:27:43 | 只看該作者
54#
發(fā)表于 2025-3-30 22:42:07 | 只看該作者
A Novel Odor Source Localization Method via a Deep Neural Network-Based Odor Compassng capacity of common metal oxide semiconductor (MOS) sensors, the OSL robots still lag far behind their biological counterparts. In this paper, we rethink the odor-source direction estimation paradigm of odor compass and propose a deep neural network (DNN) based method to improve both the accuracy
55#
發(fā)表于 2025-3-31 04:09:36 | 只看該作者
Full-stack S-DOVS: Autonomous Navigation in?Complete Real-World Dynamic Scenariosed in a full navigation stack, with a localization system, an obstacle tracker and a global planner. The result is a system that is able to navigate successfully in real-world scenarios, where it may face complex challenges as dynamic obstacles or replanning. The final work is exhaustively tested in simulation and in a ground robot.
56#
發(fā)表于 2025-3-31 06:26:35 | 只看該作者
Artificial Stupidity in?Robotics: Something Unwanted or?Somehow Useful?“Is artificial stupidity something that we must avoid or, on the contrary, something that can be useful for us?” It addresses the definition of the artificial stupidity problem and analyzes some potential methods to solve it.
57#
發(fā)表于 2025-3-31 12:48:08 | 只看該作者
58#
發(fā)表于 2025-3-31 15:27:11 | 只看該作者
Learning from?the?Past: Sequential Deep Learning for?Gas Distribution Mappingased on a multiple time step input from a sensor network. We propose a novel hybrid convolutional LSTM - transpose convolutional structure that we train with synthetic gas distribution data. Our results show that learning the spatial and temporal correlation of gas plume patterns outperforms a non-sequential neural network model.
59#
發(fā)表于 2025-3-31 17:50:16 | 只看該作者
60#
發(fā)表于 2025-3-31 23:52:50 | 只看該作者
Christyan Cruz Ulloa,Miguel Garcia,Jaime del Cerro,Antonio Barrientosren zurück.Die Neuauflage tr?gt den umfangreichen ?nderungen.?"...In seiner umfassenden, exakten, klaren und verst?ndlichen Darstellung stellt dieses Buch einen fast einmaligen und unentbehrlichen Behelf für den Ingenieur in der elektrischen Energietechnik dar, der sich mit der Projektierung, dem Ba
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 16:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赣州市| 江西省| 锡林郭勒盟| 江陵县| 漳州市| 肇州县| 桂阳县| 榆树市| 临海市| 孟连| 山西省| 玉龙| 新沂市| 邢台县| 马鞍山市| 林西县| 九寨沟县| 郎溪县| 甘南县| 灵武市| 临澧县| 张北县| 彭州市| 缙云县| 南昌县| 临清市| 文化| 普宁市| 留坝县| 柳州市| 东光县| 海南省| 台中市| 蒙城县| 雷波县| 盖州市| 玉山县| 毕节市| 云龙县| 视频| 隆尧县|