找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: q-RASAR; A Path to Predictive Kunal Roy,Arkaprava Banerjee Book 2024 The Author(s), under exclusive license to Springer Nature Switzerland

[復(fù)制鏈接]
樓主: 相持不下
11#
發(fā)表于 2025-3-23 12:25:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:28 | 只看該作者
Tools, Applications, and Case Studies (q-RA and q-RASAR),of chemical information compared to conventional descriptor-based QSAR modeling approaches. Thus, in most of the examples of modeling biological activity, toxicity, and materials property modeling using the q-RASAR technique presented in this chapter, the q-RASAR models show better quality of predic
13#
發(fā)表于 2025-3-23 21:16:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:54:43 | 只看該作者
Chemical Information and Molecular Similarity,pes, bond types, functionalities, interatomic distances, arrangements of functionality within a molecular skeleton, branching, cyclicity, hydrogen bonding propensity, molecular size, etc. are critical information in determining the interaction of a molecule with other molecules of the same compound
15#
發(fā)表于 2025-3-24 03:03:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:33 | 只看該作者
,Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure–Activity Relationships (q-RAhown superior performance over QSAR-derived predictions in several examples. This was further extended to the generation of QSAR-like statistical models, i.e., quantitative read-across structure-activity relationship (q-RASAR) by using various similarity and error-based descriptors computed from ori
17#
發(fā)表于 2025-3-24 13:53:25 | 只看該作者
18#
發(fā)表于 2025-3-24 16:22:35 | 只看該作者
Future Prospects,, materials science, and predictive toxicology. The similarity metrics and error considerations may be further refined, possibly with the application of sophistical machine learning approaches, for further development of this new field. More extensive applications of q-RA and q-RASAR in medicinal ch
19#
發(fā)表于 2025-3-24 22:49:36 | 只看該作者
2191-5407 tools.This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling metho
20#
發(fā)表于 2025-3-25 00:00:29 | 只看該作者
Book 2024odel development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 13:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义乌市| 沧州市| 建平县| 广东省| 海安县| 临颍县| 当涂县| 栾川县| 阜宁县| 和顺县| 景东| 德令哈市| 甘德县| 博罗县| 林甸县| 北辰区| 英德市| 曲阳县| 久治县| 西乌珠穆沁旗| 乐陵市| 堆龙德庆县| 灌南县| 烟台市| 彩票| 红原县| 乌鲁木齐县| 固安县| 文昌市| 廊坊市| 二连浩特市| 安龙县| 城步| 峡江县| 扶绥县| 酉阳| 永靖县| 寿宁县| 枣阳市| 泸定县| 岑巩县|