找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes; Fabrizio Colombo,Jonathan Gantner Book 2019 Springer

[復(fù)制鏈接]
查看: 8764|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:00:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes
編輯Fabrizio Colombo,Jonathan Gantner
視頻videohttp://file.papertrans.cn/782/781649/781649.mp4
概述Contains a new theory for evolution operators.Allows defining new classes of fractional diffusion and evolution problems.Inspires to explore new research directions
叢書名稱Operator Theory: Advances and Applications
圖書封面Titlebook: Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes;  Fabrizio Colombo,Jonathan Gantner Book 2019 Springer
描述.This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators.?This new approach allows to define new classes of fractional diffusion and evolution problems.?.These innovative methods and techniques, based on the concept of S-spectrum,?can inspire researchers from various areas of operator theory and PDEs?to explore new research directions in their fields..This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey? (Operator Theory: Advances and Applications, Vol. 270)..
出版日期Book 2019
關(guān)鍵詞S-spectrum; functional calculus; sectorial operators; evolution operators; fractional powers; fractional
版次1
doihttps://doi.org/10.1007/978-3-030-16409-6
isbn_softcover978-3-030-16411-9
isbn_ebook978-3-030-16409-6Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影響因子(影響力)




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes影響因子(影響力)學(xué)科排名




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes網(wǎng)絡(luò)公開度




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引頻次




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes被引頻次學(xué)科排名




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes年度引用學(xué)科排名




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes讀者反饋




書目名稱Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:45:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:54:58 | 只看該作者
5#
發(fā)表于 2025-3-22 12:44:09 | 只看該作者
The ,-Functional Calculus,The H.-functional calculus was originally introduced in [170] by Alan McIntosh. His approach was generalized to quaternionic sectorial operators that are injective and have dense range in [30]. Moreover, under the above assumptions, in [30], it is also treated the case of n-tuples of noncommuting operators.
6#
發(fā)表于 2025-3-22 13:57:33 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:08:29 | 只看該作者
Historical notes and References,Several years ago, motivated by the paper [37] of G. Birkho_ and J. von Neumann and the book [4], one of the authors and I. Sabadini started to look for an appropriate notion of spectrum for quaternionic linear operators.
9#
發(fā)表于 2025-3-23 05:24:02 | 只看該作者
Appendix: Principles of functional Analysis,The principles of functional analysis do not depend on the quaternionic structure, so with minor changes these can be proved also in quaternionic functional analysis. For the convenience of the reader, we collect such results in this appendix.
10#
發(fā)表于 2025-3-23 06:13:28 | 只看該作者
Fabrizio Colombo,Jonathan GantnerContains a new theory for evolution operators.Allows defining new classes of fractional diffusion and evolution problems.Inspires to explore new research directions
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武山县| 杂多县| 中宁县| 城固县| 辽阳县| 蒙山县| 连平县| 舟山市| 建始县| 尼木县| 翁源县| 铁岭县| 涿州市| 手机| 当雄县| 赫章县| 乡城县| 深圳市| 那曲县| 澎湖县| 湘潭县| 墨玉县| 安乡县| 台湾省| 陕西省| 嘉兴市| 福安市| 白银市| 四会市| 河北省| 江川县| 许昌市| 贺兰县| 丰城市| 华亭县| 清丰县| 通城县| 古浪县| 扎鲁特旗| 大英县| 涿州市|