找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quaternion and Clifford Fourier Transforms and Wavelets; Eckhard Hitzer,Stephen J. Sangwine Book 2013 Springer Basel 2013 complex numbers.

[復(fù)制鏈接]
樓主: counterfeit
31#
發(fā)表于 2025-3-26 22:39:08 | 只看該作者
The Balian–Low Theorem for the Windowed Clifford–Fourier Transformurier transform. We proceed with deriving several important properties of such a transform. Finally, we establish the Balian–Low theorem for a Clifford frame under certain natural assumptions on the window function.
32#
發(fā)表于 2025-3-27 02:43:38 | 只看該作者
Sparse Representation of Signals in Hardy Space reveal the information. Such representations are constructed by decomposing signals into elementary waveforms. A set of all elementary waveforms is called a dictionary. In this chapter, we introduce a new kind of sparse representation of signals in Hardy space.. the compressed sensing (CS) techniqu
33#
發(fā)表于 2025-3-27 06:47:25 | 只看該作者
34#
發(fā)表于 2025-3-27 11:17:33 | 只看該作者
Analytic Video (2D + ,) Signals Using Clifford–Fourier Transforms in Multiquaternion Grassmann–Hamil by a scalar, a pseudoscalar and six phases. The phase extraction procedure is fully detailed. Finally, a numerical implementation using discrete fast Fourier transforms of an analytic multiquaternion video signal is provided.
35#
發(fā)表于 2025-3-27 14:34:26 | 只看該作者
36#
發(fā)表于 2025-3-27 19:03:06 | 只看該作者
Clifford–Fourier Transform and Spinor Representation of Images. We investigate applications to image processing focusing on segmentation and Clifford–Fourier analysis. All these applications involve sections of the spinor bundle of image graphs, that is spinor fields, satisfying the so-called Dirac equation.
37#
發(fā)表于 2025-3-27 22:47:44 | 只看該作者
Sparse Representation of Signals in Hardy Spacealled a dictionary. In this chapter, we introduce a new kind of sparse representation of signals in Hardy space.. the compressed sensing (CS) technique with the dictionary. where ? denotes the unit disk. In addition, we give examples exhibiting the algorithm.
38#
發(fā)表于 2025-3-28 02:36:40 | 只看該作者
39#
發(fā)表于 2025-3-28 06:31:58 | 只看該作者
40#
發(fā)表于 2025-3-28 14:26:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康保县| 宾川县| 明溪县| 保靖县| 澄江县| 荔浦县| 上杭县| 固安县| 远安县| 芜湖县| 张家川| 深水埗区| 盈江县| 青浦区| 麻江县| 泽库县| 盐城市| 镇平县| 永川市| 岢岚县| 太仆寺旗| 蕲春县| 西和县| 榕江县| 湄潭县| 商洛市| 贺兰县| 拜泉县| 开鲁县| 绥化市| 溧阳市| 梅州市| 抚顺县| 德化县| 内乡县| 香河县| 墨脱县| 合江县| 滨州市| 山西省| 上饶市|