找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-projective Moduli for Polarized Manifolds; Eckart Viehweg Book 1995 Springer-Verlag Berlin Heidelberg 1995 Algebraische R?ume.Birati

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:16:15 | 只看該作者
Moduli Problems and Hilbert Schemes,erent moduli problems of manifolds. As a very first step towards their proofs, we will discuss properties a reasonable moduli functor should have and we will apply them to show that the manifolds or schemes considered correspond to the points of a locally closed subscheme of a certain Hilbert scheme.
32#
發(fā)表于 2025-3-27 04:29:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:25:31 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:48 | 只看該作者
35#
發(fā)表于 2025-3-27 16:31:57 | 只看該作者
,D. Mumford’s Geometric Invariant Theory,he statements which are used in this monograph, except for those coming from the theory of algebraic groups, such as the finiteness of the algebra of invariants under the action of a reductive group, we include proofs. Usually we just reproduce the arguments given by Mumford in [59] (hopefully witho
36#
發(fā)表于 2025-3-27 21:46:26 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:38 | 只看該作者
Allowing Certain Singularities,gularities or, being very optimistic, to certain reduced schemes. However, nothing is known about the local closedness and the boundedness of the corresponding moduli functors, as soon as the dimension of the objects is larger than two. Reducible or non-normal schemes have to be added to the objects
39#
發(fā)表于 2025-3-28 06:49:24 | 只看該作者
Book 1995meters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [5
40#
發(fā)表于 2025-3-28 14:10:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特后旗| 抚松县| 黄骅市| 桓台县| 永春县| 永嘉县| 玛多县| 永修县| 桃源县| 黄冈市| 塔城市| 灌南县| 鲁山县| 视频| 鄂托克前旗| 奉新县| 施秉县| 襄城县| 米泉市| 健康| 吉木萨尔县| 宁乡县| 油尖旺区| 临西县| 淮北市| 宁德市| 习水县| 杂多县| 自贡市| 论坛| 乌什县| 新营市| 合山市| 汕尾市| 铜梁县| 新龙县| 咸丰县| 云阳县| 通化县| 广西| 上蔡县|