找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-projective Moduli for Polarized Manifolds; Eckart Viehweg Book 1995 Springer-Verlag Berlin Heidelberg 1995 Algebraische R?ume.Birati

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-26 22:16:15 | 只看該作者
Moduli Problems and Hilbert Schemes,erent moduli problems of manifolds. As a very first step towards their proofs, we will discuss properties a reasonable moduli functor should have and we will apply them to show that the manifolds or schemes considered correspond to the points of a locally closed subscheme of a certain Hilbert scheme.
32#
發(fā)表于 2025-3-27 04:29:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:25:31 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:48 | 只看該作者
35#
發(fā)表于 2025-3-27 16:31:57 | 只看該作者
,D. Mumford’s Geometric Invariant Theory,he statements which are used in this monograph, except for those coming from the theory of algebraic groups, such as the finiteness of the algebra of invariants under the action of a reductive group, we include proofs. Usually we just reproduce the arguments given by Mumford in [59] (hopefully witho
36#
發(fā)表于 2025-3-27 21:46:26 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:38 | 只看該作者
Allowing Certain Singularities,gularities or, being very optimistic, to certain reduced schemes. However, nothing is known about the local closedness and the boundedness of the corresponding moduli functors, as soon as the dimension of the objects is larger than two. Reducible or non-normal schemes have to be added to the objects
39#
發(fā)表于 2025-3-28 06:49:24 | 只看該作者
Book 1995meters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [5
40#
發(fā)表于 2025-3-28 14:10:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
易门县| 万安县| 盐山县| 洞头县| 广西| 涟水县| 南乐县| 丰都县| 金华市| 无为县| 本溪| 息烽县| 永新县| 岳西县| 宁夏| 五寨县| 盐亭县| 正镶白旗| 都兰县| 德化县| 莎车县| 揭东县| 元谋县| 塔城市| 洛南县| 甘德县| 高邮市| 安塞县| 伊宁市| 凤庆县| 互助| 涪陵区| 彭州市| 来凤县| 建水县| 昂仁县| 娱乐| 高邮市| 清原| 孟津县| 疏勒县|