找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Stationary Distributions; Markov Chains, Diffu Pierre Collet,Servet Martínez,Jaime San Martín Book 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: Disperse
21#
發(fā)表于 2025-3-25 04:07:52 | 只看該作者
Pierre Collet,Servet Martínez,Jaime San Martíndivision of labour. Economic integration — the division of labour beyond the borders of individual states and the consequent extension of foreign trade — is essential if the technical and economic parameters of production in a broad range of industries are to be improved: an increase in the internat
22#
發(fā)表于 2025-3-25 09:31:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:31:14 | 只看該作者
ns to be established by an . system of balances — in precise form for the most significant goods and in a general fashion for aggregate flows. Each detailed balance exhibits availabilities and major requirements. This long-established planning practice can be described in the well-known equation, th
24#
發(fā)表于 2025-3-25 17:08:16 | 只看該作者
Introduction,process is said to be killed when it hits the trap and it is assumed that this happens almost surely. We investigate the behavior of the process before being killed, more precisely we study what happens when one conditions the process to survive for a long time.
25#
發(fā)表于 2025-3-25 21:48:49 | 只看該作者
Quasi-Stationary Distributions: General Results, distributions (QSDs). In Theorem?2.2 of Sect.?., we show that starting from a QSD the killing time is exponentially distributed, and in Theorem?2.6 of Sect.?., we show that the killing time and the state of killing are independent random variables. In Theorem?2.11 of Sect.?., we give a theorem of e
26#
發(fā)表于 2025-3-26 03:01:09 | 只看該作者
Markov Chains on Finite Spaces,the normalized left Perron–Frobenius eigenvector of the jump rates matrix restricted to the allowed states. The right eigenvector is shown to be the asymptotic ratio of survival probabilities. In Sect.?., it is proved that the trajectories that survive forever form a Markov chain which is an .-proce
27#
發(fā)表于 2025-3-26 05:54:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:07:42 | 只看該作者
30#
發(fā)表于 2025-3-26 18:22:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 夏邑县| 始兴县| 临沭县| 通辽市| 黑河市| 稷山县| 京山县| 九寨沟县| 章丘市| 呼图壁县| 咸阳市| 福鼎市| 伊吾县| 彭泽县| 西宁市| 朝阳县| 沂水县| 定西市| 万荣县| 定南县| 兴国县| 淮阳县| 比如县| 兴隆县| 樟树市| 卓资县| 锦州市| 江阴市| 甘南县| 梨树县| 珲春市| 汝阳县| 墨竹工卡县| 新干县| 崇礼县| 潮安县| 新丰县| 济阳县| 延庆县| 海兴县|