找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Triangulations; Moduli Space, Quantu Mauro Carfora,Annalisa Marzuoli Book 2017Latest edition Springer International Publishing AG 2

[復(fù)制鏈接]
樓主: 導(dǎo)彈
21#
發(fā)表于 2025-3-25 05:01:15 | 只看該作者
22#
發(fā)表于 2025-3-25 08:28:12 | 只看該作者
23#
發(fā)表于 2025-3-25 11:54:45 | 只看該作者
24#
發(fā)表于 2025-3-25 16:03:09 | 只看該作者
25#
發(fā)表于 2025-3-25 20:24:04 | 只看該作者
Triangulated Surfaces and Polyhedral Structures,art by recalling the relevant definitions from Piecewise–Linear (PL) geometry, (for which we refer freely to Rourke and Sanderson (Introduction to piecewise-linear topology. Springer, New York, 1982) and Thurston (Three-dimensional geometry and topology. Volume 1 (edited by S. Levy). Princeton Unive
26#
發(fā)表于 2025-3-26 03:28:07 | 只看該作者
Singular Euclidean Structures and Riemann Surfaces,vertices of the triangulation. In this chapter we show that around any such a vertex we can introduce complex coordinates in terms of which we can write down the conformal conical metric, locally parametrizing the singular structure of (.., .). This makes available a powerful dictionary between 2-di
27#
發(fā)表于 2025-3-26 04:32:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:49:37 | 只看該作者
The Quantum Geometry of Polyhedral Surfaces: Variations on Strings and All That,rtheless proves useful for illustrating the interplay between quantum field theory, the moduli space of Riemann surfaces, and the properties of polyhedral surfaces which are the . of this LNP. At the root of this interplay lies 2D quantum gravity. It is well known that such a theory allows for two c
30#
發(fā)表于 2025-3-26 17:38:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邛崃市| 绍兴县| 横峰县| 敦煌市| 甘孜| 舞阳县| 柏乡县| 康平县| 舟曲县| 宜阳县| 马尔康县| 祁东县| 寻乌县| 合阳县| 利津县| 渭源县| 调兵山市| 长岭县| 城口县| 泰宁县| 衡东县| 清远市| 如东县| 新安县| 漳州市| 永济市| 松溪县| 南召县| 江川县| 宝兴县| 观塘区| 阿克苏市| 内黄县| 聂荣县| 固原市| 乌鲁木齐县| 西吉县| 丹棱县| 沽源县| 安达市| 辽宁省|