找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Triangulations; Moduli Space, Quantu Mauro Carfora,Annalisa Marzuoli Book 2017Latest edition Springer International Publishing AG 2

[復(fù)制鏈接]
樓主: 導(dǎo)彈
21#
發(fā)表于 2025-3-25 05:01:15 | 只看該作者
22#
發(fā)表于 2025-3-25 08:28:12 | 只看該作者
23#
發(fā)表于 2025-3-25 11:54:45 | 只看該作者
24#
發(fā)表于 2025-3-25 16:03:09 | 只看該作者
25#
發(fā)表于 2025-3-25 20:24:04 | 只看該作者
Triangulated Surfaces and Polyhedral Structures,art by recalling the relevant definitions from Piecewise–Linear (PL) geometry, (for which we refer freely to Rourke and Sanderson (Introduction to piecewise-linear topology. Springer, New York, 1982) and Thurston (Three-dimensional geometry and topology. Volume 1 (edited by S. Levy). Princeton Unive
26#
發(fā)表于 2025-3-26 03:28:07 | 只看該作者
Singular Euclidean Structures and Riemann Surfaces,vertices of the triangulation. In this chapter we show that around any such a vertex we can introduce complex coordinates in terms of which we can write down the conformal conical metric, locally parametrizing the singular structure of (.., .). This makes available a powerful dictionary between 2-di
27#
發(fā)表于 2025-3-26 04:32:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:49:37 | 只看該作者
The Quantum Geometry of Polyhedral Surfaces: Variations on Strings and All That,rtheless proves useful for illustrating the interplay between quantum field theory, the moduli space of Riemann surfaces, and the properties of polyhedral surfaces which are the . of this LNP. At the root of this interplay lies 2D quantum gravity. It is well known that such a theory allows for two c
30#
發(fā)表于 2025-3-26 17:38:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定南县| 疏附县| 徐州市| 鄂托克前旗| 龙里县| 神农架林区| 普洱| 靖西县| 浪卡子县| 昂仁县| 南阳市| 依安县| 兰州市| 东兴市| 南陵县| 吐鲁番市| 昆明市| 砀山县| 塘沽区| 行唐县| 金阳县| 石泉县| 无为县| 大新县| 舒兰市| 都江堰市| 莱芜市| 白朗县| 乌兰浩特市| 长泰县| 班玛县| 井陉县| 盱眙县| 连平县| 五峰| 新宾| 高邑县| 赤城县| 安福县| 从化市| 雅安市|