找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics: Theory and Applications; Ajoy Ghatak,S. Lokanathan Book 2004 Springer Science+Business Media B.V. 2004 Angular Momentum

[復(fù)制鏈接]
樓主: 無法仿效
41#
發(fā)表于 2025-3-28 17:30:03 | 只看該作者
Linear Harmonic Oscillator: I Solution of the Schr?dinger Equation and Relationship with the Classica quantum system along with its transition to the classical domain. It has applications in many problems in physics; e.g. in studying the vibrational spectra of molecules, quantum theory of radiation, etc. In this chapter, we will first obtain solutions of the onedimensional Schr?dinger equation cor
42#
發(fā)表于 2025-3-28 21:07:13 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:25:35 | 只看該作者
45#
發(fā)表于 2025-3-29 08:49:29 | 只看該作者
Dirac’s Bra and Ket Algebralowing Dirac, will be called as bra and ket vectors) and operators representing dynamical variables (like position coordinates, components of momentum and angular momentum) by matrices.. In the following two chapters we will use the bra and ket algebra to solve the linear harmonic oscillator problem
46#
發(fā)表于 2025-3-29 13:48:08 | 只看該作者
47#
發(fā)表于 2025-3-29 17:08:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:28:39 | 只看該作者
Book 2004ncepts, the details of which are given with great clarity in this book. Various concepts have been derived from first principles, so it can also be used for self-study. The chapters on the JWKB approximation, time-independent perturbation theory and effects of magnetic field stand out for their clar
49#
發(fā)表于 2025-3-30 00:01:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:40 | 只看該作者
Angular Momentum I—The Spherical Harmonicsakes the values .(.+1) where . = 0, 1, 2, 3,... and for each value of . there is (2. + 1) fold degeneracy; i.e. there are (2. + 1) eigenfunctions correspongding to the same eigenvalue .(. + 1).. — these eigenfunctions are known as spherical harmonics and are denoted by ..(.)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新和县| 山西省| 梁山县| 奉贤区| 高雄县| 拉萨市| 阿合奇县| 体育| 乌拉特前旗| 绥宁县| 喀什市| 博兴县| 扎赉特旗| 特克斯县| 本溪市| 正定县| 德江县| 洞头县| 南京市| 社旗县| 海兴县| 平舆县| 杂多县| 汝州市| 宁强县| 镶黄旗| 河南省| 广东省| 张掖市| 扶余县| 扶风县| 铜山县| 宁海县| 乳山市| 浦县| 施甸县| 汾阳市| 石台县| 辉县市| 红河县| 棋牌|