找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics for Chemistry; Seogjoo J. Jang Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: lumbar-puncture
11#
發(fā)表于 2025-3-23 10:10:04 | 只看該作者
Polyatomic Molecules and Molecular Spectroscopy,lation of adiabatic electronic states for fixed nuclear coordinates. Taking diatomic molecules as examples, independent electron model and the approximation of linear combination of atomic orbitals as molecular orbitals (LCAO-MO) are described, and the molecular term symbols for corresponding electr
12#
發(fā)表于 2025-3-23 17:17:46 | 只看該作者
13#
發(fā)表于 2025-3-23 21:59:27 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:50 | 只看該作者
Special Topics,stem quantum dynamics and quantum master equation approaches; (iii) Green’s function approach. These topics have played important roles in theoretical and computational investigation of quantum processes in complex environments. Some of the core concepts and relations will be derived and explained.
15#
發(fā)表于 2025-3-24 03:38:43 | 只看該作者
Rotational States and Spectroscopy,description of rotational motion of diatomic molecules as free rigid rotors. Important principles concerning pure rotational transitions and those accompanying vibrational transitions are explained. Corrections for rigid rotor states, incorporating the effects of centrifugal distortion and ro-vibrational coupling, are provided as well.
16#
發(fā)表于 2025-3-24 08:20:38 | 只看該作者
17#
發(fā)表于 2025-3-24 12:30:09 | 只看該作者
Quantum Dynamics of Pure and Mixed States,ty operator and extension of the time dependent Schr?dinger equation to the quantum Liouville equation become necessary. Application of the perturbation theory to this quantum Liouville equation is presented as well.
18#
發(fā)表于 2025-3-24 15:47:59 | 只看該作者
Concepts and Assumptions of Quantum Mechanics,uation defined in a one dimensional space are introduced along with their major properties. The chapter concludes with a solution of a quantum particle in a one dimensional box in order to illustrate the major concepts and ideas of quantum mechanics.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大方县| 隆林| 泸州市| 玉田县| 德庆县| 苏州市| 南陵县| 江都市| 安龙县| 邹城市| 蛟河市| 普安县| 吴堡县| 磐石市| 黎平县| 满城县| 大石桥市| 康保县| 浦城县| 开平市| 乳源| 峡江县| 天祝| 清水河县| 北碚区| 从江县| 武隆县| 丹凤县| 桃园县| 宝清县| 荥阳市| 全州县| 德钦县| 天祝| 陇川县| 云阳县| 洞口县| 邵阳县| 孝昌县| 垦利县| 龙南县|