找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; Symmetries Walter Greiner,Berndt Müller Textbook 1994Latest edition Springer-Verlag Berlin Heidelberg 1994 Baryon.Charmo

[復制鏈接]
樓主: Chylomicron
51#
發(fā)表于 2025-3-30 12:16:51 | 只看該作者
Mathematical Supplement: Fundamental Properties of Lie Groups,The rotation group is composed of the infinite number of operators (setting ?=1)
52#
發(fā)表于 2025-3-30 16:23:57 | 只看該作者
53#
發(fā)表于 2025-3-30 18:21:48 | 只看該作者
Mathematical Supplement,Up to now, we have seen various examples of Lie groups, especially unitary (U(.) and SU(.)) groups. Let us see if we can find some common denominator in the structure of their algebras U(.) and SU(.) (algebras are denoted by lower case letters).
54#
發(fā)表于 2025-3-31 00:28:50 | 只看該作者
Special Discrete Symmetries,In the last two chapters of this book we return to symmetries which have a general significance in quantum mechanics. We shall begin with the discrete symmetries of space inversion and time reversal.
55#
發(fā)表于 2025-3-31 04:39:43 | 只看該作者
Mathematical Excursion: Non-compact Lie Groups,Compact and non-compact Lie groups differ from each other in their essential properties (which will be discussed later), so we should investigate the group quality “compactness” more fully.
56#
發(fā)表于 2025-3-31 07:11:23 | 只看該作者
,Proof of Racah’s Theorem,We devote this last chapter to the proof of Racah’s theorem. Its usefulness and power is known to us from Sect. 3.6 and many sections thereafter. Let us first state it.
57#
發(fā)表于 2025-3-31 11:09:09 | 只看該作者
Walter Greiner,Berndt MüllerIncludes supplementary material:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
墨竹工卡县| 齐河县| 宁蒗| 朝阳市| 博爱县| 新沂市| 上犹县| 密云县| 平武县| 新巴尔虎右旗| 宁都县| 宣武区| 平远县| 定兴县| 永兴县| 武义县| 绥江县| 牙克石市| 五大连池市| 山东| 营口市| 韶关市| 泽库县| 文化| 通化市| 汝南县| 镇安县| 嵊泗县| 蕲春县| 凤冈县| 都安| 稷山县| 东乌珠穆沁旗| 灵丘县| 鞍山市| 清徐县| 宣武区| 搜索| 陕西省| 宁海县| 常山县|