找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; Axiomatic Approach a Tapan Kumar Das Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: LANK
31#
發(fā)表于 2025-3-26 21:41:06 | 只看該作者
32#
發(fā)表于 2025-3-27 03:46:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:01:39 | 只看該作者
,Formulation of?Quantum Mechanics: Representations and Pictures,errelations. It then goes on to present different pictures for the quantum dynamics: Schr?dinger, Heisenberg and interaction pictures from different perspectives. Matrix eigen value equation has been discussed as a mathematical preliminary.
34#
發(fā)表于 2025-3-27 11:54:12 | 只看該作者
35#
發(fā)表于 2025-3-27 16:12:37 | 只看該作者
,Solution of Schr?dinger Equation: Boundary and Continuity Conditions in Coordinate Representation,localized systems. Bound, unbound and quasi-bound systems are discussed. Introducing quantum numbers, importance of symmetry in choosing coordinate system and its connection with degeneracy have also been discussed. Wave packets, Ehrenfest’s theorem and their relation with classical physics have bee
36#
發(fā)表于 2025-3-27 21:06:27 | 只看該作者
One-Dimensional Potentials,s: infinite and finite square well, harmonic oscillator well, infinite well with a delta function, quasi-bound state in a delta function barrier. Motion of a wave packet in a harmonic oscillator well is also discussed.
37#
發(fā)表于 2025-3-28 01:47:29 | 只看該作者
,Particle in?a?3-D Well,drical hole with rigid walls and the three-dimensional spherically symmetric harmonic oscillator. We stress that the choice of a coordinate system consistent with the symmetry of the system simplifies the problem.
38#
發(fā)表于 2025-3-28 03:55:41 | 只看該作者
,Scattering in? Three Dimension,eoretical analysis. These are justified by specifying the widely different scales of length, mass, etc. This discussion provides understanding of both the experimental setup and the theoretical analysis, making a convincing bridge between the two. Partial waves, phase shift, etc., for spherically sy
39#
發(fā)表于 2025-3-28 10:05:24 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新田县| 永修县| 霍山县| 正安县| 原平市| 大渡口区| 彭山县| 德州市| 阿拉善左旗| 深州市| 阿勒泰市| 尼木县| 安顺市| 综艺| 托克托县| 宽城| 阳朔县| 襄汾县| 乐平市| 曲麻莱县| 资中县| 山丹县| 南乐县| 子洲县| 凤城市| 浦北县| 毕节市| 东方市| 贵南县| 密云县| 鲁山县| 昭苏县| 永州市| 新乡市| 徐州市| 肥西县| 婺源县| 英山县| 寿光市| 剑阁县| 温州市|