找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics; An Introduction Walter Greiner Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 classical mechanics.eigen

[復(fù)制鏈接]
樓主: McKinley
41#
發(fā)表于 2025-3-28 15:43:06 | 只看該作者
42#
發(fā)表于 2025-3-28 20:24:20 | 只看該作者
Perturbation Theory,An exact solution of the Schr?dinger equation exists only for a few idealized problems; normally it has to be solved using an approximation method. Perturbation theory is applied to those cases in which the real system can be described by a small change in an easily solvable, idealized system.
43#
發(fā)表于 2025-3-29 02:01:27 | 只看該作者
Spin,We have often mentioned the spin of the electron in our previous considerations. In this chapter we want to discuss the experimental evidence for the existence of spin. Furthermore, we shall develop its mathematical description.
44#
發(fā)表于 2025-3-29 04:56:44 | 只看該作者
A Nonrelativistic Wave Equation with Spin,In this chapter we introduce a new method of deducing — in a systematic, theoretical manner — the Pauli equation for the electron .. In contrast to earlier derivations, we do not refer to empirical facts, but develop the new theoretical concept of the ..
45#
發(fā)表于 2025-3-29 11:18:19 | 只看該作者
46#
發(fā)表于 2025-3-29 11:40:47 | 只看該作者
47#
發(fā)表于 2025-3-29 17:30:11 | 只看該作者
The Radiation Laws,h-Jeans radiation law acounted for experiments in the region of long-wave radiation; Wiien’s law for those in the region of short-wave radiation. By introducing a new constant ., Planck was successful in finding an interpolation between the two laws.
48#
發(fā)表于 2025-3-29 20:16:04 | 只看該作者
Mathematical Foundations of Quantum Mechanics I,by an operator function .] in a state . by . where . is the operator which is somehow related to .. In a first approach we are now going to deal with operators from a more general point of view. After this we shall determine a class of operators which is very important in quantum mechanics.
49#
發(fā)表于 2025-3-30 02:58:11 | 只看該作者
The Formal Framework of Quantum Mechanics, relations which will be considered here have already been discussed in the preceding chapters in a more “physical” way and most have been proved in detail. Some of the explanations and proofs are supplemented or demonstrated once again in a more compact manner in additional exercises.
50#
發(fā)表于 2025-3-30 06:03:22 | 只看該作者
http://image.papertrans.cn/q/image/781301.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 临泽县| 霍山县| 襄城县| 龙山县| 建平县| 九江市| 诸城市| 克拉玛依市| 牙克石市| 黎川县| 手游| 江门市| 桦甸市| 乌兰察布市| 明溪县| 陕西省| 称多县| 日喀则市| 蒙阴县| 于田县| 鄱阳县| 息烽县| 普陀区| 米易县| 巨鹿县| 武宁县| 河南省| 大荔县| 广平县| 泗阳县| 思南县| 城步| 扶余县| 上高县| 连州市| 六枝特区| 商都县| 五寨县| 鄂托克前旗| 沾益县|