找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Measure Theory; Jan Hamhalter Book 2003 Springer Science+Business Media Dordrecht 2003 C*-algebra.Dimension.coherence.decoherence.

[復(fù)制鏈接]
樓主: 遮陽傘
31#
發(fā)表于 2025-3-26 23:34:45 | 只看該作者
Generalized Gleason Theorem,t space extends to a linear functional on all bounded operators. The lattice of all projections on a Hilbert space . can be characterized among von Neumann projection lattices as being atomic and irreducible. Thus, Gleason Theorem covers only very special situation in this respect. Besides, it is im
32#
發(fā)表于 2025-3-27 01:47:39 | 只看該作者
33#
發(fā)表于 2025-3-27 06:11:39 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:26 | 只看該作者
Orthomorphisms of Projections,(which describes the probability structure in question), and the group of automorphisms of the algebra (which expresses the time development of the system). It is the ambition of the logico-algebraic approach to quantum mechanics, as it was articulated by Mackey [224], to recover all these aspects f
35#
發(fā)表于 2025-3-27 15:33:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:54 | 只看該作者
Jauch-Piron States,vesgtiated. It was seen that basic tools of classical analysis can be established for the quantum measure spaces given by ordered structures of projections. One of the most essential achievements along this line is the Gleason Theorem that guarantees the existence of quantum integral and underlines
37#
發(fā)表于 2025-3-27 23:38:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:26:41 | 只看該作者
Generalized Gleason Theorem,portant to describe . measures on projection lattices and not only completely additive ones. In this connection, a natural question arises of whether or not Gleason Theorem can be extended to finitely additive measures on projection lattices of general von Neumann algebra. This question was first posed by Mackey [224].
39#
發(fā)表于 2025-3-28 09:13:06 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开阳县| 自治县| 谷城县| 双江| 沾化县| 武城县| 封开县| 淮北市| 双峰县| 海安县| 昌吉市| 合川市| 故城县| 阿克苏市| 荆门市| 永寿县| 松溪县| 行唐县| 那坡县| 景泰县| 礼泉县| 博野县| 柞水县| 文安县| 南川市| 犍为县| 丹阳市| 高要市| 玉溪市| 台南县| 菏泽市| 五大连池市| 秦皇岛市| 陕西省| 平安县| 都昌县| 翼城县| 德昌县| 庆元县| 绿春县| 昌吉市|