找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Isometry Groups; Debashish Goswami,Jyotishman Bhowmick Book 2016 Springer (India) Pvt. Ltd 2016 Compact Quantum Group.Equivariant

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 07:14:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:26:14 | 只看該作者
An Example of Physical Interest,me generalities on real . algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.
23#
發(fā)表于 2025-3-25 14:08:22 | 只看該作者
More Examples and Open Questions,eber as well as some Drinfeld-Jimbo quantum groups. We also give the outlines of other approaches to quantum isometry groups, such as the framework of orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of
24#
發(fā)表于 2025-3-25 17:55:58 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:59 | 只看該作者
More Examples and Open Questions, orthogonal filtrations due to Banica, Skalski and de Chanvalon, affine quantum isometry groups in the sense of Banica and quantum isometry groups of compact metric spaces due to Banica, Goswami, Sabbe and Quaegebeur. We mention several open questions in this context.
26#
發(fā)表于 2025-3-26 04:13:21 | 只看該作者
2363-6149 d quantum groups.Provides an up-to-date overview and future .This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of nonc
27#
發(fā)表于 2025-3-26 04:43:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:26 | 只看該作者
Classical and Noncommutative Geometry,tative space of forms and the Laplacian in this set up. The last section of this chapter deals with the quantum group equivariance in noncommutative geometry where we discuss some natural examples of equivariant spectral triples on the Podles’ spheres.
29#
發(fā)表于 2025-3-26 12:50:51 | 只看該作者
Definition and Existence of Quantum Isometry Groups,real structure) preserving isometries. Sufficient conditions under which the action of the quantum isometry group keeps the . algebra invariant and is a . action are given. We also mention some sufficient conditions for the existence of the quantum group of orientation preserving isometries without fixing a choice of the ‘volume-form’.
30#
發(fā)表于 2025-3-26 19:12:20 | 只看該作者
Infosys Science Foundation Serieshttp://image.papertrans.cn/q/image/781260.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 吴旗县| 夏津县| 登封市| 大同市| 黄梅县| 土默特左旗| 历史| 巴中市| 邵阳市| 岳普湖县| 牟定县| 张家港市| 清新县| 丹东市| 上林县| 吐鲁番市| 木兰县| 永顺县| 河间市| 竹山县| 黔西县| 高雄县| 徐州市| 津市市| 黎川县| 普格县| 霍州市| 石狮市| 会同县| 临颍县| 泸水县| 屏东县| 时尚| 育儿| 马公市| 湾仔区| 鞍山市| 民县| 襄城县| 岢岚县|