找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Hamilton-Jacobi Formalism; A. K. Kapoor,Prasanta K. Panigrahi,S. Sree Ranjani Book 2022 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 25225|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:59:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantum Hamilton-Jacobi Formalism
編輯A. K. Kapoor,Prasanta K. Panigrahi,S. Sree Ranjani
視頻videohttp://file.papertrans.cn/782/781227/781227.mp4
概述A well-trained undergraduate student will learn a new and elegant method of solving quantum mechanical problems.An experienced reader can follow the treatment of several diverse and exotic models with
叢書名稱SpringerBriefs in Physics
圖書封面Titlebook: Quantum Hamilton-Jacobi Formalism;  A. K. Kapoor,Prasanta K. Panigrahi,S. Sree Ranjani Book 2022 The Editor(s) (if applicable) and The Auth
描述This book describes the Hamilton-Jacobi formalism of quantum mechanics, which allows.computation of eigenvalues of quantum mechanical potential problems without solving for the.wave function. The examples presented include exotic potentials such as quasi-exactly solvable models and Lame an dassociated Lame potentials. A careful application of boundary conditions offers an insight into the nature of solutions of several potential models. Advanced.undergraduates having knowledge of complex variables and quantum mechanics will find thisas an interesting method to obtain the eigenvalues and eigen-functions. The discussion on.complex zeros of the wave function gives intriguing new results which are relevant for.advanced students and young researchers. Moreover, a few open problems in research are.discussed as well, which pose a challenge to the mathematically oriented readers..
出版日期Book 2022
關(guān)鍵詞quantum Hamilton-Jacobi formalism; exact quantization condition; rational extension of potential model
版次1
doihttps://doi.org/10.1007/978-3-031-10624-8
isbn_softcover978-3-031-10623-1
isbn_ebook978-3-031-10624-8Series ISSN 2191-5423 Series E-ISSN 2191-5431
issn_series 2191-5423
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Quantum Hamilton-Jacobi Formalism影響因子(影響力)




書目名稱Quantum Hamilton-Jacobi Formalism影響因子(影響力)學(xué)科排名




書目名稱Quantum Hamilton-Jacobi Formalism網(wǎng)絡(luò)公開度




書目名稱Quantum Hamilton-Jacobi Formalism網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantum Hamilton-Jacobi Formalism被引頻次




書目名稱Quantum Hamilton-Jacobi Formalism被引頻次學(xué)科排名




書目名稱Quantum Hamilton-Jacobi Formalism年度引用




書目名稱Quantum Hamilton-Jacobi Formalism年度引用學(xué)科排名




書目名稱Quantum Hamilton-Jacobi Formalism讀者反饋




書目名稱Quantum Hamilton-Jacobi Formalism讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:24 | 只看該作者
ssues of societal trust related to healthcare, medical practitioners, and the dependence on reliability of scientific results...Insightful background on the development of AI is provided, and the use of this co978-3-031-61119-3978-3-031-61117-9Series ISSN 1860-4862 Series E-ISSN 1860-4870
板凳
發(fā)表于 2025-3-22 02:30:54 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:34 | 只看該作者
A. K. Kapoor,Prasanta K. Panigrahi,S. Sree Ranjani a particular task by adjusting the input data for the downstream task to fit the pretrained model. Comparative analyses between VulPrompt and other baseline methods demonstrate the model’s robust performance across all datasets tested, consistently achieving notable results. This success showcases
5#
發(fā)表于 2025-3-22 10:22:14 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:58 | 只看該作者
7#
發(fā)表于 2025-3-22 19:43:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:22 | 只看該作者
A. K. Kapoor,Prasanta K. Panigrahi,S. Sree Ranjanirivacy and prevents misuse. The security properties of Visor are formally demonstrated; the system guarantees integrity and ensures that users remain anonymous during feedback, while also maintaining unlinkability among pseudonyms and reviews associated with the same user. Finally, the system provid
9#
發(fā)表于 2025-3-23 03:11:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:34:58 | 只看該作者
2191-5423 ts which are relevant for.advanced students and young researchers. Moreover, a few open problems in research are.discussed as well, which pose a challenge to the mathematically oriented readers..978-3-031-10623-1978-3-031-10624-8Series ISSN 2191-5423 Series E-ISSN 2191-5431
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修武县| 彰武县| 兴山县| 阳江市| 繁峙县| 栾川县| 林周县| 浦县| 揭西县| 渑池县| 谢通门县| 景德镇市| 延长县| 军事| 商洛市| 且末县| 濮阳市| 广德县| 鄂托克旗| 哈尔滨市| 两当县| 循化| 和林格尔县| 根河市| 陇西县| 西充县| 水城县| 高碑店市| 柳州市| 民丰县| 建瓯市| 望谟县| 新余市| 云南省| 长岭县| 三门县| 定远县| 重庆市| 富锦市| 佳木斯市| 浙江省|