找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Groups in Three-Dimensional Integrability; Atsuo Kuniba Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 斷頭臺(tái)
31#
發(fā)表于 2025-3-26 21:01:32 | 只看該作者
Intertwiner for Quantized Coordinate Ring ,alogous to the tetrahedron or 3D reflection equations. Nevertheless, the intertwining relation still admits a reformulation as what we call the quantized . reflection equation. This fact will be utilized to construct matrix product solutions to the . reflection equation in Chap. ..
32#
發(fā)表于 2025-3-27 02:26:42 | 只看該作者
Trace Reductions of ,xplicit formulas, construct commuting layer transfer matrices, and demonstrate that the birational versions reproduce the distinguished example of set-theoretical solutions to the Yang–Baxter equation known as geometric ..
33#
發(fā)表于 2025-3-27 07:53:13 | 只看該作者
34#
發(fā)表于 2025-3-27 09:37:17 | 只看該作者
,Trace Reduction of?,onstructed. The procedure is parallel with the one applied to the tetrahedron equation in Chap. .. The resulting . matrices are expressed by the matrix product formula. They are characterized in the quantum group theoretical framework based on the Onsager coideal of ..
35#
發(fā)表于 2025-3-27 15:38:03 | 只看該作者
,Boundary Vector Reductions of?,hich have been detailed in Chap. .. The . part generates the companion . matrices that satisfy the reflection equation. They are expressed by a matrix product formula in terms of . and characterized as the intertwiners of various Onsager coideals of the quantum affine algebras .. The final list of the solutions is summarized in Table ..
36#
發(fā)表于 2025-3-27 17:55:44 | 只看該作者
Application to Multispecies TASEP,x model on an . lattice. The stationary condition is translated into their quadratic relations, the so-called Faddeev–Zamolodchikov algebra, which are highly non-local from the viewpoint of the five-vertex model. They are shown to be a far-reaching consequence of the single tetrahedron equation of type . in Sect. . and its solution in Theorem ..
37#
發(fā)表于 2025-3-27 22:56:31 | 只看該作者
1864-5879 ation of the conventional Yang–Baxter and reflection equatioQuantum groups have been studied intensively in mathematics and have found many valuable applications in theoretical and mathematical physics since their discovery in the mid-1980s. Roughly speaking, there are two prototype examples of quan
38#
發(fā)表于 2025-3-28 05:01:31 | 只看該作者
dann, wenn man die gesamten, auch au?er?konomischen, Naturprozesse miteinbez?ge. Man k?nnte nun argumentieren, da? der reale Stoffwechselproze? über den Vorgang der Assimilation ja dazu diene, den akkumulativen Kreislaufproze? des Geldes zu “füttern”, ihn zu erm?glichen. Hier h?tte man aber bereits
39#
發(fā)表于 2025-3-28 08:12:24 | 只看該作者
Atsuo Kunibatationsweise. Für die vorliegende 8. Auflage wurden gro?e Teile der Kapitel 1 bis 4 gründlich überarbeitet und erg?nzt. Das neue Kapitel 9 bietet unterhaltsame Einblicke in die spannende (Vor-)Geschichte der Spieltheorie.?.Eine gut lesbare Einführung!.978-3-642-31962-4978-3-642-31963-1
40#
發(fā)表于 2025-3-28 10:48:27 | 只看該作者
Atsuo Kunibatationsweise. Für die vorliegende 8. Auflage wurden gro?e Teile der Kapitel 1 bis 4 gründlich überarbeitet und erg?nzt. Das neue Kapitel 9 bietet unterhaltsame Einblicke in die spannende (Vor-)Geschichte der Spieltheorie.?.Eine gut lesbare Einführung!.978-3-642-31962-4978-3-642-31963-1
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 15:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奇台县| 菏泽市| 五河县| 洛川县| 贺兰县| 达孜县| 五寨县| 浮山县| 射阳县| 精河县| 许昌市| 宁德市| 榆社县| 恭城| 泽普县| 波密县| 邵东县| 昌图县| 贺兰县| 闽清县| 二连浩特市| 邹城市| 汕尾市| 根河市| 桂平市| 安新县| 隆回县| 龙门县| 大港区| 孟津县| 宁陕县| 阿拉善盟| 迁安市| 云和县| 赫章县| 宜兰市| 开原市| 沿河| 灵璧县| 双峰县| 怀来县|