找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Giampiero Esposito Book 19921st edition Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:15:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:16:20 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:07:45 | 只看該作者
35#
發(fā)表于 2025-3-27 14:27:09 | 只看該作者
Global Boundary Conditions and ζ(0) Value for the Massless Spin-1/2 Fieldre boundary. The corresponding ζ(0) value is obtained studying the Laplace transform of the heat equation for the squared Dirac operator, and finally deriving the asymptotic expansion of the inverse Laplace transform, i.e. the heat kernel. This squared operator arises from the study of the coupled s
36#
發(fā)表于 2025-3-27 20:10:39 | 只看該作者
Choice of Boundary Conditions in One-Loop Quantum Cosmologythe PDF .(0). Namely, the PDF contribution to the prefactor due to the spin-3/2 field is proportional to .. (. being the three-sphere radius), which does not cancel .. due to the gravitational field subject to Dirichlet boundary conditions for the perturbed three-metric..We therefore study possible
37#
發(fā)表于 2025-3-28 00:06:49 | 只看該作者
Ghost Fields and Gauge Modes in One-Loop Quantum Cosmology when expressed in terms of its physical degrees of freedom, the transverse-traceless modes. One can formally show that a suitable measure exists such that the gauge-invariant form of the path integral for the ground-state wave function is equal to the one expressed in terms of the physical degrees
38#
發(fā)表于 2025-3-28 02:43:22 | 只看該作者
Local Boundary Conditions for the Weyl Spinoradd to the linearized Einstein action such that the linearized Einstein equations follow from requiring the action to be stationary. Thus we conclude that fixing the linearized electric curvature on .. does not lead to a well-posed classical boundary-value problem. This implies that the correspondin
39#
發(fā)表于 2025-3-28 08:02:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙洋县| 沅陵县| 连州市| 双桥区| 延长县| 南部县| 双鸭山市| 宜君县| 滨州市| 城固县| 于都县| 达拉特旗| 北辰区| 定陶县| 慈利县| 大埔区| 江西省| 平武县| 张家口市| 长丰县| 穆棱市| 湘乡市| 榆中县| 榆社县| 漠河县| 敖汉旗| 新巴尔虎右旗| 绥中县| 宝丰县| 瑞安市| 年辖:市辖区| 资兴市| 赤壁市| 潍坊市| 五大连池市| 托克逊县| 视频| 平湖市| 阿拉善左旗| 永昌县| 渑池县|