找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Fields and Quantum Space Time; Gerard ’t Hooft,Arthur Jaffe,Raymond Stora Book 1997 Springer Science+Business Media New York 1997

[復(fù)制鏈接]
樓主: Suture
21#
發(fā)表于 2025-3-25 05:28:29 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:14 | 只看該作者
NATO Science Series B:http://image.papertrans.cn/q/image/781200.jpg
23#
發(fā)表于 2025-3-25 12:59:35 | 只看該作者
24#
發(fā)表于 2025-3-25 15:56:09 | 只看該作者
Non-Commutative Gauge Fields from Quantum GroupsWe give a non-technical introduction into the theory of non-commutative lattice gauge fields with quantum gauge group. The general construction is illustrated at the example of the Hamiltonian Chern-Simons theory. We also review the counterpart of the Noether’s theorem for quantum groups.
25#
發(fā)表于 2025-3-25 22:33:43 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:08 | 只看該作者
Quantum Integrable Models on 1 + 1 Discrete Space TimeClassical theory of solitons was based on two main examples: the KdV equation [1] and Toda lattice [2]. The role of continuous space variable . in the first example is played by discrete integer valued variable . in the second one. So discrete space was not foreign to the soliton theory from its very beginning.
27#
發(fā)表于 2025-3-26 07:34:09 | 只看該作者
Turbulence under a Magnifying GlassThis is an introductory course on the open problems of fully developed turbulence which present a long standing challenge for theoretical and mathematical physics. The plan of the course is as follows:
28#
發(fā)表于 2025-3-26 11:41:36 | 只看該作者
Exercises in Equivariant CohomologyEquivariant cohomology [1]–[5] is at the core of the geometrical interpretation of the topological -more precisely, cohomological- field theories proposed by E. Witten in 1988 [6, 7]. The corresponding mathematical equipment also sheds some light on the gauge fixing procedure [8] familiar in the Lagrangian formulation of gauge theories.
29#
發(fā)表于 2025-3-26 13:04:58 | 只看該作者
30#
發(fā)表于 2025-3-26 17:47:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石景山区| 从江县| 新河县| 桃园县| 启东市| 荃湾区| 隆尧县| 东乌珠穆沁旗| 隆子县| 开阳县| 屯昌县| 兴城市| 皋兰县| 张家界市| 微山县| 资溪县| 托克托县| 汪清县| 道孚县| 金门县| 大同县| 聂拉木县| 安远县| 铁岭县| 波密县| 伊春市| 闻喜县| 兰考县| 赤峰市| 南投市| 台南县| 卫辉市| 聂拉木县| 清苑县| 福州市| 临湘市| 仁布县| 金门县| 永新县| 宁国市| 增城市|