找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory and Noncommutative Geometry; Ursula Carow-Watamura,Yoshiaki Maeda,Satoshi Watam Book 2005 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: supplementary
41#
發(fā)表于 2025-3-28 15:21:03 | 只看該作者
From Quantum Tori to Quantum Homogeneous Spaces,We construct dual objects for quantum complex projective spaces as quantum homogeneous spaces of quantum unitary groups, in which the deformation parameters are antisymmetric matrices.
42#
發(fā)表于 2025-3-28 21:23:01 | 只看該作者
Classification of All Quadratic Star Products on a Plane* **,In this paper we classify all quadratic star products on a plane by using Hochschild cohomology and Poisson cohomology.
43#
發(fā)表于 2025-3-29 02:48:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:15:38 | 只看該作者
Noncommutative Line Bundles and Gerbes,We introduce noncommutative line bundles and gerbes within the framework of deformation quantization. The Seiberg-Witten map is used to construct the corresponding noncommutative ?ech cocycles. Morita equivalence of star products and quantization of twisted Poisson structures are discussed from this point of view.
45#
發(fā)表于 2025-3-29 10:33:24 | 只看該作者
46#
發(fā)表于 2025-3-29 11:35:56 | 只看該作者
47#
發(fā)表于 2025-3-29 18:12:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:39:59 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:14 | 只看該作者
Quantum Field Theory and Noncommutative Geometry978-3-540-31526-1Series ISSN 0075-8450 Series E-ISSN 1616-6361
50#
發(fā)表于 2025-3-30 06:23:15 | 只看該作者
Local Models for Manifolds with Symplectic Connections of Ricci Type*,ion procedure from the Euclidean space R. endowed with a constant symplectic structure and the standard flat connection. We also prove that on the bundle of symplectic frames . over ., there exists a 1-form with values in the algebra .(.+1,R) which locally satisfies a Maurer-Cartan type equation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河西区| 吐鲁番市| 芦溪县| 闸北区| 交城县| 绍兴市| 安仁县| 滦南县| 赞皇县| 丹棱县| 吉木萨尔县| 阿荣旗| 轮台县| 台前县| 南和县| 旺苍县| 山阳县| 扬州市| 儋州市| 松桃| 井陉县| 横峰县| 溆浦县| 堆龙德庆县| 民权县| 灵宝市| 牟定县| 麻江县| 油尖旺区| 九台市| 贡山| 黑水县| 莱芜市| 嫩江县| 西乌珠穆沁旗| 博湖县| 醴陵市| 文昌市| 资中县| 阿拉善右旗| 左贡县|