找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Field Theory; By Academician Prof. Kazuhiko Nishijima,Masud Chaichian,Anca Tureanu Book 2023 Springer Nature B.V. 2023 Elementary P

[復(fù)制鏈接]
樓主: introspective
31#
發(fā)表于 2025-3-27 00:48:37 | 只看該作者
What Is Gauge Theory?,between the form of an interaction and the symmetries of the theory. In this chapter, we introduce the general notion of gauge field and gauge theory, and show that one possible answer to the question above is the so-called “gauge principle”. In the following, we shall survey the formalism needed to
32#
發(fā)表于 2025-3-27 02:14:16 | 只看該作者
Spontaneous Symmetry Breaking,ase, a quantum of the gauge field corresponding to the broken or hidden symmetry acquires mass, in contrast to the photon. In this chapter, we will discuss a mechanism whereby the symmetry in the Lagrangian is broken.
33#
發(fā)表于 2025-3-27 08:05:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:37:31 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:40 | 只看該作者
,Becchi–Rouet–Stora Transformations,or the gauge field and the fermion field. However, in order to quantize these fields, we need to introduce the gauge-fixing term and the Faddeev–Popov ghost term. Consequently, the invariance under the local gauge transformation is broken. However, a new global invariance shows up in its place. This
36#
發(fā)表于 2025-3-27 19:06:49 | 只看該作者
37#
發(fā)表于 2025-3-28 00:09:58 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:32 | 只看該作者
Book 2023apanese edition has been initiated and taken care of by theeditors Prof. M. Chaichian and Dr. A. Tureanu from the University of Helsinki, who were close collaborators of Prof. Nishijima. Dr. Yuki Sato, a researcher in particle physics at the University of Nagoya, most kindly accepted to undertake th
39#
發(fā)表于 2025-3-28 06:50:01 | 只看該作者
Dr. A. Tureanu from the University of Helsinki, who were close collaborators of Prof. Nishijima. Dr. Yuki Sato, a researcher in particle physics at the University of Nagoya, most kindly accepted to undertake th978-94-024-2192-7978-94-024-2190-3
40#
發(fā)表于 2025-3-28 14:12:27 | 只看該作者
chreitenden Bewegung. Deswegen dürfen wir die Drehbewegung neben der fortschreitenden Bewegung vernachl?ssigen. — In diesem Kapitel betrachten wir jetzt den anderen Grenz-fall: ein K?rper schreitet als Ganzes nicht fort, seine Bewegung beschr?nkt sich ausschlie?lich auf Drehungen. Die Achse dieser D
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥阳市| 句容市| 兴仁县| 哈巴河县| 厦门市| 柞水县| 吴堡县| 年辖:市辖区| 沈丘县| 昌黎县| 东阳市| 九龙城区| 苗栗市| 昌乐县| 车致| 洱源县| 平顺县| 恩施市| 甘谷县| 丰县| 合水县| 新密市| 霍山县| 镇康县| 崇明县| 长泰县| 遂宁市| 普兰县| 阆中市| 盐边县| 墨竹工卡县| 任丘市| 安溪县| 仪征市| 南开区| 婺源县| 綦江县| 炉霍县| 松滋市| 邹城市| 修武县|