找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Computers; Theory and Algorithm Belal Ehsan Baaquie,Leong-Chuan Kwek Book 2023 The Editor(s) (if applicable) and The Author(s), und

[復制鏈接]
樓主: Suture
41#
發(fā)表于 2025-3-28 14:59:00 | 只看該作者
42#
發(fā)表于 2025-3-28 21:32:09 | 只看該作者
43#
發(fā)表于 2025-3-29 01:42:34 | 只看該作者
44#
發(fā)表于 2025-3-29 05:52:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:00:53 | 只看該作者
Classical Gates and?AlgorithmsAn algorithm is defined to be a well-defined finite set of instructions that are carried out systematically in a given number of steps for solving a well-defined problem. An algorithm, in particular, can have the purpose of carrying out a specific information processing task.
46#
發(fā)表于 2025-3-29 13:47:02 | 只看該作者
Principles of?Quantum MechanicsThe principles and formalism of quantum mechanics are reviewed as these provide the basis for quantum computers and quantum algorithms. This chapter?is based on the Copenhagen interpretation?of quantum mechanics pioneered by Werner Heisenberg, Niels Bohr and Max Born, with the derivations following the approach of Baaquie.
47#
發(fā)表于 2025-3-29 17:37:11 | 只看該作者
Quantum Superposition and?EntanglementTwo properties of Hilbert space that are pivotal in making quantum algorithms faster than classical algorithms are . and ., discussed?in Sects.?. and .. A few special cases, discussed below, concretely illustrate the general principles of . and . for quantum algorithms.
48#
發(fā)表于 2025-3-29 23:09:51 | 只看該作者
Deutsch AlgorithmThe?Deutsch algorithm?illustrates, using a very special example, that a quantum computer, ., is more efficient than a classical computer.
49#
發(fā)表于 2025-3-30 02:49:57 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:17 | 只看該作者
Grover’s AlgorithmGrover’s algorithm??and Shor’s algorithm?for factorizing (large) primes are the two masterpieces of quantum computing.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平安县| 内丘县| 西乌| 新兴县| 南平市| 新疆| 碌曲县| 柘荣县| 张家港市| 林西县| 永兴县| 石渠县| 汉中市| 浪卡子县| 科技| 富川| 兴文县| 张家界市| 鹤壁市| 阳原县| 开江县| 赣榆县| 天镇县| 保山市| 襄汾县| 江门市| 左云县| 侯马市| 长治县| 徐汇区| 柳江县| 黄平县| 伽师县| 嘉荫县| 浪卡子县| 金平| 太保市| 开鲁县| 楚雄市| 开江县| 象州县|