找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization, Coherent States, and Complex Structures; J.-P. Antoine,S. Twareque Ali,A. Odzijewicz Book 1995 Springer Science+Business Med

[復(fù)制鏈接]
樓主: VER
31#
發(fā)表于 2025-3-27 01:02:25 | 只看該作者
Diffeomorphism Groups and Anyon Fieldson fields satisfy .-commutators, where . is the well-known phase shift associated with a single counterclockwise exchange of a pair of anyons. Our method uses a realization of the braid group by means of paths in the plane, that transform naturally under diffeomorphisms of ..
32#
發(fā)表于 2025-3-27 05:10:01 | 只看該作者
Differential Forms on the Skyrmion Bundleantum chromodynamics (QCD) by its underlying symmetry. Yet most of the articles deal with the ungauged, purely hadronic case treating interactions between baryons and mesons and do not cover interactions between these particles and electromagnetic fields, although especially for the latter case, the
33#
發(fā)表于 2025-3-27 06:58:31 | 只看該作者
34#
發(fā)表于 2025-3-27 10:12:15 | 只看該作者
35#
發(fā)表于 2025-3-27 16:15:42 | 只看該作者
Geometro-Stochastic Quantization and Quantum Geometrydaptation to the general relativistic regime leads to the replacement of the classical frame bundles, which underlie the formulation of parallel transport in classical general relativity, with quantum frame bundles. This gives rise to quantum geometries for quantum field theory in curved spacetime,
36#
發(fā)表于 2025-3-27 19:46:26 | 只看該作者
Symplectic Induction, Unitary Induction and BRST Theory (Summary)This action should preserve the inner product in .. In the same spirit one can define a symplectic and a hamiltonian representation of .. The data needed are a symplectic manifold (., ω) and an action of . on .. For a symplectic representation this action should preserve ω; for a hamiltonian represe
37#
發(fā)表于 2025-3-27 22:58:10 | 只看該作者
38#
發(fā)表于 2025-3-28 03:06:08 | 只看該作者
39#
發(fā)表于 2025-3-28 06:43:08 | 只看該作者
40#
發(fā)表于 2025-3-28 12:10:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
刚察县| 石泉县| 皮山县| 花垣县| 永福县| 抚松县| 五莲县| 定西市| 兴和县| 浦北县| 沾益县| 德化县| 南漳县| 镇赉县| 岳池县| 博野县| 库车县| 宿迁市| 临海市| 清水县| 精河县| 黄浦区| 奉化市| 正安县| 涞水县| 吴川市| 绥棱县| 仙桃市| 马龙县| 肃南| 长岭县| 东台市| 西宁市| 三台县| 红河县| 汉源县| 昆明市| 景德镇市| 平罗县| 康乐县| 济源市|