找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantitative Information Fusion for Hydrological Sciences; Xing Cai,T. -C. Jim Yeh Book 2008 Springer-Verlag Berlin Heidelberg 2008 Ground

[復(fù)制鏈接]
查看: 11338|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:04:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Quantitative Information Fusion for Hydrological Sciences
編輯Xing Cai,T. -C. Jim Yeh
視頻videohttp://file.papertrans.cn/781/780871/780871.mp4
概述edited overview about quantitative information fusion in hydrology.Includes supplementary material:
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Quantitative Information Fusion for Hydrological Sciences;  Xing Cai,T. -C. Jim Yeh Book 2008 Springer-Verlag Berlin Heidelberg 2008 Ground
描述.In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences...Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed..
出版日期Book 2008
關(guān)鍵詞Groundwater; Hydrological Sciences; Quantitative Information Fusion; hydrogeology; hydrology; modeling; nu
版次1
doihttps://doi.org/10.1007/978-3-540-75384-1
isbn_softcover978-3-642-09461-3
isbn_ebook978-3-540-75384-1Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Quantitative Information Fusion for Hydrological Sciences影響因子(影響力)




書目名稱Quantitative Information Fusion for Hydrological Sciences影響因子(影響力)學(xué)科排名




書目名稱Quantitative Information Fusion for Hydrological Sciences網(wǎng)絡(luò)公開度




書目名稱Quantitative Information Fusion for Hydrological Sciences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantitative Information Fusion for Hydrological Sciences被引頻次




書目名稱Quantitative Information Fusion for Hydrological Sciences被引頻次學(xué)科排名




書目名稱Quantitative Information Fusion for Hydrological Sciences年度引用




書目名稱Quantitative Information Fusion for Hydrological Sciences年度引用學(xué)科排名




書目名稱Quantitative Information Fusion for Hydrological Sciences讀者反饋




書目名稱Quantitative Information Fusion for Hydrological Sciences讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:36 | 只看該作者
Book 2008hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences...Intelligent computation and
板凳
發(fā)表于 2025-3-22 00:31:14 | 只看該作者
地板
發(fā)表于 2025-3-22 08:03:55 | 只看該作者
Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity,owledge of groundwater flow regimes could lead to reducing and minimizing, as far as possible, the negative impacts throughout the construction phases, and to developing sustainable groundwater use and management tools.
5#
發(fā)表于 2025-3-22 11:59:21 | 只看該作者
Data Fusion Methods for Integrating Data-driven Hydrological Models,g, neural networks, fuzzy logic, M5 model trees and instance-based learning. The results show that the data fusion approaches produce better performing models compared to the individual models on their own. The potential of this approach is demonstrated yet remains largely unexplored in real-time hydrological forecasting.
6#
發(fā)表于 2025-3-22 15:54:11 | 只看該作者
Data Fusion Methods for Integrating Data-driven Hydrological Models,emonstrated using flow forecasting models from the River Ouse catchment in the UK for a lead time of 6 hours. These approaches include simple averaging, neural networks, fuzzy logic, M5 model trees and instance-based learning. The results show that the data fusion approaches produce better performin
7#
發(fā)表于 2025-3-22 20:47:13 | 只看該作者
A New Paradigm for Groundwater Modeling,fic computing to be real-time interactive with the modelers being dynamically-engaged and in full control throughout the computational process. The report stressed: scientists not only want to solve equations or analyze data that results from computing, they also want to interpret what is happening
8#
發(fā)表于 2025-3-22 23:06:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:17:13 | 只看該作者
10#
發(fā)表于 2025-3-23 07:46:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 20:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昆明市| 青龙| 新化县| 新兴县| 武清区| 秭归县| 治县。| 信阳市| 东莞市| 盐亭县| 西昌市| 昌乐县| 义乌市| 尼玛县| 海兴县| 武冈市| 正安县| 临猗县| 文成县| 阿拉善左旗| 满城县| 巩留县| 青浦区| 富锦市| 杭州市| 萨嘎县| 大邑县| 巢湖市| 张家川| 张家界市| 广西| 宁波市| 丰顺县| 凤凰县| 德阳市| 防城港市| 鸡东县| 密山市| 河北省| 宜川县| 唐山市|