找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantitative Economics with R; A Data Science Appro Vikram Dayal Textbook 2020 Springer Nature Singapore Pte Ltd. 2020 R.Time Series Data.C

[復(fù)制鏈接]
樓主: burgeon
21#
發(fā)表于 2025-3-25 04:31:22 | 只看該作者
IntroductionThe reasons for a data science approach are briefly discussed. An overview of the book is presented, followed by a brief explanation of key elements of R code.
22#
發(fā)表于 2025-3-25 07:29:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:46:52 | 只看該作者
Wrangling and Graphing DataFirst, we see how graphs can reveal with the Anscombe data. Then the relationship between carbon and livelihoods is explored. Last, we use the WDI package to access data.
24#
發(fā)表于 2025-3-25 18:31:34 | 只看該作者
FunctionsTo begin we see how we can make our own simple functions in R. We then plot functions quickly with R’s curve function. We consider supply and demand and the Cobb–Douglas production function.
25#
發(fā)表于 2025-3-25 23:49:19 | 只看該作者
Difference EquationsWe examine how a variable changes over time with a simple example of a difference equation. We see how we can simulate the values of the variable over time and plot the values. We see difference equations related to carbon stocks, fishing and stock pollutants.
26#
發(fā)表于 2025-3-26 00:24:08 | 只看該作者
27#
發(fā)表于 2025-3-26 05:07:43 | 只看該作者
Statistical InferenceWe use box models to illustrate statistical significance. We use simulation to understand sampling distributions and confidence intervals. We then look at simulation-based methods for statistical inference—the bootstrap and permutation tests.
28#
發(fā)表于 2025-3-26 09:22:17 | 只看該作者
Causal InferenceSimulation is used to illuminate causal inference. We begin with a short look at causal graphs and potential outcomes. We then aim to understand and see examples of experiments, regression adjustment, matching and sensitivity analysis, regression discontinuity, difference-in-difference, Manski bounds and instrumental variables.
29#
發(fā)表于 2025-3-26 13:58:34 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:52 | 只看該作者
Growth CausesWe replicate an important paper regarding the causal effect of institutions on growth. We then consider the relationship between geography and growth. We briefly consider the issue of testing the exclusion restriction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林右旗| 高碑店市| 峡江县| 桂阳县| 贡觉县| 库伦旗| 黑龙江省| 大英县| 即墨市| 满城县| 东山县| 南澳县| 罗田县| 赣州市| 叙永县| 吉安县| 尤溪县| 如东县| 大洼县| 满城县| 衢州市| 吉水县| 涟源市| 东丽区| 万年县| 香河县| 平乐县| 郁南县| 梨树县| 筠连县| 称多县| 和田市| 原阳县| 丹江口市| 象山县| 大余县| 开封县| 夏津县| 沙河市| 京山县| 天祝|