找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
21#
發(fā)表于 2025-3-25 04:00:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:41:22 | 只看該作者
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:24 | 只看該作者
Conference proceedings 1998losed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades.This volume is a state-of-the-art collection of important papers on CAD
25#
發(fā)表于 2025-3-25 23:30:54 | 只看該作者
0943-853X ebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer a
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic,al addition and for all sufficiently large ., there is a sentence of length . for which the decision procedure runs for more than 2. steps. In the case of Presburger arithmetic, the corresponding bound is .. These bounds apply also to the minimal lengths of proofs for any complete axiomatization in which the axioms are easily recognized.
27#
發(fā)表于 2025-3-26 07:20:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:18 | 只看該作者
,Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress,d by the author in 1973 at Carnegie Mellon University (Collins 1973b). In the twenty years since then several very important improvements have been made to the method which, together with a very large increase in available computational power, have made it possible to solve in seconds or minutes som
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 抚宁县| 胶州市| 闽清县| 平泉县| 武鸣县| 独山县| 黄石市| 阿鲁科尔沁旗| 呼和浩特市| 洛浦县| 怀远县| 菏泽市| 平陆县| 简阳市| 如皋市| 金川县| 吉安市| 额敏县| 临清市| 毕节市| 搜索| 虞城县| 和平区| 郸城县| 绥阳县| 侯马市| 红安县| 平凉市| 赤城县| 广饶县| 汕尾市| 报价| 建平县| 新密市| 宣城市| 西峡县| 巫山县| 绥江县| 红河县| 五指山市|