找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Qualitative Properties of Dispersive PDEs; Vladimir Georgiev,Alessandro Michelangeli,Raffaele Conference proceedings 2022 The Editor(s) (i

[復(fù)制鏈接]
樓主: Body-Mass-Index
31#
發(fā)表于 2025-3-27 00:27:37 | 只看該作者
Quasilinear Wave Equations with Decaying Time-Potentialnvolved. The interaction between linear and nonlinear terms is a crucial point in determination of global evolution dynamics. When the nonlinear term depends on the derivatives of the solution, the situation is even more delicate. Indeed, even in the constant coefficients case, the null conditions s
32#
發(fā)表于 2025-3-27 03:04:25 | 只看該作者
Hamiltonian Field Theory Close to the Wave Equation: From Fermi-Pasta-Ulam to Water Wavesing to “graded” polynomial perturbations in .., . and their space derivatives of higher order, the local field theory is equivalent, in the sense of the Hamiltonian normal form, to that of the Korteweg-de Vries hierarchy of second order. Within this framework, we explain the connection between the t
33#
發(fā)表于 2025-3-27 05:17:10 | 只看該作者
34#
發(fā)表于 2025-3-27 09:50:01 | 只看該作者
35#
發(fā)表于 2025-3-27 14:22:34 | 只看該作者
Dynamics of Solutions to the Gross–Pitaevskii Equation Describing Dipolar Bose–Einstein Condensatesata below, above, and at the mass–energy threshold. We revisit some properties of powers of the Riesz transforms by means of the decay properties of the integral kernel associated to the parabolic biharmonic equation. These decay properties play a fundamental role in establishing the dynamical features of the solutions to the studied GPE.
36#
發(fā)表于 2025-3-27 19:46:16 | 只看該作者
37#
發(fā)表于 2025-3-28 01:12:31 | 只看該作者
Schr?dinger Flow’s Dispersive Estimates in a regime of Re-scaled Potentialsxplicit, and the understanding of such a dependence would be crucial in connecting the dispersive behaviour of the short-range Schr?dinger operator with the zero-range Hamiltonian. The general set-up of the problem is discussed, together with preliminary answers, open questions, and plausible conjectures, in a ‘propaganda’ spirit for this subject.
38#
發(fā)表于 2025-3-28 05:04:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:19:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:48:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 17:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎囊县| 伽师县| 华容县| 邵阳县| 古田县| 板桥市| 新丰县| 平利县| 板桥市| 阿拉尔市| 漳州市| 平原县| 云和县| 定襄县| 罗江县| 泗水县| 平陆县| 汾西县| 隆安县| 安新县| 偏关县| 资兴市| 克山县| 汤原县| 三门峡市| 海淀区| 汶川县| 金坛市| 武山县| 开平市| 旬阳县| 丰原市| 桂东县| 平罗县| 长丰县| 安义县| 亳州市| 策勒县| 嘉峪关市| 恩平市| 屏山县|