找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Quadrature RC?Oscillators; The van der Pol Appr Jo?o Carlos Ferreira de Almeida Casaleiro,Luís Aug Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Scuttle
31#
發(fā)表于 2025-3-26 21:31:41 | 只看該作者
32#
發(fā)表于 2025-3-27 03:35:17 | 只看該作者
Jo?o Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskynce Equations. For these, no matrix theory and hardly any calculus are needed. Then, before embarking on linear and nonlinear DS, a review of some Linear Algebra in Chapter 4 provides the bulk of matrix theory required for the study of later Chapters. Systems of Linear Differ- ential Equations (Ch.
33#
發(fā)表于 2025-3-27 06:09:32 | 只看該作者
Jo?o Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskyiefly introduced in this chapter. A common thread running through these fields is the presence of singularities which causes a failure of the Implicit Function theorem (IFT) and destroys the structural stability of the DS, invalidates forecasts and undermines Comparative Statics analysis. One major
34#
發(fā)表于 2025-3-27 11:33:44 | 只看該作者
35#
發(fā)表于 2025-3-27 15:21:03 | 只看該作者
Jo?o Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskytion of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.978-3-642-43517-1978-3-642-13722-8
36#
發(fā)表于 2025-3-27 18:24:44 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:40 | 只看該作者
38#
發(fā)表于 2025-3-28 02:26:16 | 只看該作者
39#
發(fā)表于 2025-3-28 08:55:15 | 只看該作者
Jo?o Carlos Ferreira de Almeida Casaleiro,Luís Augusto Bica Gomes Oliveira,Igor M. Filanovskytion of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.978-3-642-43517-1978-3-642-13722-8
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松潘县| 青州市| 拜泉县| 千阳县| 聂荣县| 丘北县| 湖州市| 互助| 扎囊县| 上虞市| 渝中区| 东丰县| 密云县| 梅州市| 闻喜县| 封丘县| 伊宁市| 泰和县| 雅江县| 蓬溪县| 社会| 双辽市| 神池县| 甘孜| 惠安县| 吉首市| 平乐县| 巴塘县| 丰都县| 通渭县| 喜德县| 开封县| 昆山市| 金堂县| 大竹县| 永城市| 上栗县| 包头市| 曲沃县| 麻阳| 吉木乃县|