找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratische Zahlk?rper; Eine Einführung mit Franz Lemmermeyer Textbook 2017 Springer-Verlag GmbH Deutschland 2017 Idealklassengruppe.diop

[復制鏈接]
樓主: Harding
11#
發(fā)表于 2025-3-23 11:57:59 | 只看該作者
978-3-662-53821-0Springer-Verlag GmbH Deutschland 2017
12#
發(fā)表于 2025-3-23 17:34:50 | 只看該作者
Vorgeschichte,pitel verfolgen wir diese Gleichung durch ihre Geschichte von Diophant über Bachet und Fermat bis hin zu Euler und zeigen, auf welche Probleme Eulers geniale Idee geführt hat, diese Gleichung durch das Rechnen mit Zahlen der Form . zu l?sen.
13#
發(fā)表于 2025-3-23 18:54:46 | 只看該作者
,Teilbarkeit in Integrit?tsbereichen,iesem Kapitel wollen wir diese Begriffe in quadratischen Zahlringen untersuchen. Au?erdem zeigen wir, dass in Ringen mit einem euklidischen Algorithmus der Satz von der eindeutigen Zerlegbarkeit in Primelemente gilt. Weiter taucht erstmals Ideale auf, die wir sp?ter zu einem zentralen Objekt unserer Untersuchungen machen werden.
14#
發(fā)表于 2025-3-23 23:30:21 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:58 | 只看該作者
,Quadratische Zahlk?rper,In diesem Kapitel legen wir die Grundlagen für das Rechnen in quadratischen Zahlringen. Wir kl?ren, was ein quadratischer Zahlk?rper ist und welche seiner Elemente wir als ?ganz“ betrachten wollen. Darüberhinaus erkl?ren wir, warum man um algebraische nicht herumkommt, wenn man etwa gewisse Eigenschaften der Fibonaccizahlen untersuchen m?chte.
16#
發(fā)表于 2025-3-24 09:22:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:06 | 只看該作者
18#
發(fā)表于 2025-3-24 15:53:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:11 | 只看該作者
Vorgeschichte,pitel verfolgen wir diese Gleichung durch ihre Geschichte von Diophant über Bachet und Fermat bis hin zu Euler und zeigen, auf welche Probleme Eulers geniale Idee geführt hat, diese Gleichung durch das Rechnen mit Zahlen der Form . zu l?sen.
20#
發(fā)表于 2025-3-25 03:05:54 | 只看該作者
,Teilbarkeit in Integrit?tsbereichen,iesem Kapitel wollen wir diese Begriffe in quadratischen Zahlringen untersuchen. Au?erdem zeigen wir, dass in Ringen mit einem euklidischen Algorithmus der Satz von der eindeutigen Zerlegbarkeit in Primelemente gilt. Weiter taucht erstmals Ideale auf, die wir sp?ter zu einem zentralen Objekt unserer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
余庆县| 武冈市| 西吉县| 东山县| 卢龙县| 全州县| 麻阳| 金沙县| 隆安县| 勐海县| 弥勒县| 丹江口市| 修水县| 五原县| 搜索| 拉萨市| 广德县| 饶阳县| 额尔古纳市| 高安市| 崇文区| 韶山市| 株洲市| 云阳县| 航空| 蓝山县| 门头沟区| 泰兴市| 白银市| 舒兰市| 永寿县| 蒙阴县| 钟祥市| 丹阳市| 彩票| 望奎县| 获嘉县| 紫云| 三门县| 上林县| 龙门县|