找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic and Higher Degree Forms; Krishnaswami Alladi,Manjul Bhargava,Pham Huu Tiep Book 2013 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: COAX
11#
發(fā)表于 2025-3-23 13:04:43 | 只看該作者
Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms,determine if a given algebra of rank 4 over a commutative ring . embeds in the 2 ×2-matrix ring M.(.) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras among algebras of rank 4, computation of the Hilbert symbol, and computation of maximal orders.
12#
發(fā)表于 2025-3-23 16:17:45 | 只看該作者
Integral Positive Ternary Quadratic Forms,We discuss some families of integral positive ternary quadratic forms. Our main example is . where . is positive, squarefree, and . with .
13#
發(fā)表于 2025-3-23 21:31:31 | 只看該作者
14#
發(fā)表于 2025-3-24 00:29:48 | 只看該作者
15#
發(fā)表于 2025-3-24 05:48:40 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:25 | 只看該作者
Krishnaswami Alladi,Manjul Bhargava,Pham Huu TiepProvides survey lectures, also accessible to non-experts.Introduction summarizes current research on quadratic and higher degree forms with a presentation of the necessary background material.Contains
17#
發(fā)表于 2025-3-24 13:53:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:39:49 | 只看該作者
John Voightrchführung gültiger Beurteilungen Behandelt grundlegendes.BiThis innovative book provides both the conceptual framework and clinical methods needed to appropriately handle problems that arise in?the administration of?Miranda warnings and waivers.? Largely overlooked for decades, Miranda rights have
19#
發(fā)表于 2025-3-24 21:44:57 | 只看該作者
20#
發(fā)表于 2025-3-25 02:06:26 | 只看該作者
On Representation of an Integer by ,, + ,, + ,, and the Modular Equations of Degree 3 and 5,presentations of . by the ternary quadratic forms .respectively. Finally, I propose a remarkable new identity for .(...)?.(.) with . being an odd prime. This identity makes nontrivial use of the ternary quadratic forms with discriminants .., 16...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 来宾市| 福贡县| 云浮市| 玉林市| 绥宁县| 阿克苏市| 南投县| 丰原市| 吉首市| 瓮安县| 南溪县| 夹江县| 奉新县| 漯河市| 莫力| 临夏县| 饶平县| 中西区| 如东县| 稻城县| 新昌县| 无棣县| 隆化县| 宣武区| 喀喇沁旗| 拉孜县| 社会| 高碑店市| 哈巴河县| 金堂县| 囊谦县| 河北区| 依安县| 东阿县| 玛沁县| 连城县| 开鲁县| 石首市| 灵璧县| 连山|