找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.proof

[復(fù)制鏈接]
樓主: genial
21#
發(fā)表于 2025-3-25 03:32:33 | 只看該作者
Classification of Hermitean Forms in Characteristic 2,All forms considered in this chapter are E-hermitean forms over a field k of characteristic 2 equipped with antiautomorphism ???..
22#
發(fā)表于 2025-3-25 08:43:38 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:36 | 只看該作者
Involutions in Hermitean Spaces in Characteristic Two,Fields and forms are as specified under the caption of Chapter VIII.
24#
發(fā)表于 2025-3-25 17:07:51 | 只看該作者
Extension of Isometries,The main result in this chapter is a theorem in [1] on the extension of isometries φ: V →V between ⊥-closed subspaces of a sesquilinear space E (Theorems 5 and 9 below).
25#
發(fā)表于 2025-3-25 21:48:36 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:53 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:35 | 只看該作者
Quadratic Forms,Quadratic forms are closely related to orthosymmetric sesquilinear forms and, to a large extent, they behave very similarly. In fact, the two concepts partly overlap (cf. Example 2 in Section 3 below).
29#
發(fā)表于 2025-3-26 13:10:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:56 | 只看該作者
,Diagonalization of ?0-Forms,ecomposition into mutually orthogonal lines is impossible. The problem of “normalizing” bases brings us to stability and the beginner is confronted with the first Ping-Pong style proof with its characteristic back-and-forth argument (Theorem 2). These matters are basic and their knowledge is tacitly assumed in the rest of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
子长县| 若尔盖县| 霸州市| 巩义市| 马公市| 太原市| 巴彦县| 阿拉善盟| 武川县| 富源县| 河源市| 平顺县| 久治县| 连州市| 和顺县| 武鸣县| 新郑市| 连州市| 阿坝县| 娱乐| 确山县| 叶城县| 利川市| 江孜县| 伊金霍洛旗| 晋江市| 囊谦县| 龙海市| 会理县| 舞钢市| 北碚区| 乃东县| 共和县| 藁城市| 宝应县| 钦州市| 尤溪县| 汝阳县| 左权县| 茌平县| 绍兴市|