找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Diophantine Equations; Titu Andreescu,Dorin Andrica Textbook 2015 Springer Science+Business Media New York 2015 Pell‘s equation.

[復(fù)制鏈接]
查看: 36272|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:03:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Quadratic Diophantine Equations
編輯Titu Andreescu,Dorin Andrica
視頻videohttp://file.papertrans.cn/781/780045/780045.mp4
概述Includes both theoretical and computational examples.Explores new computational techniques for quadratic diophantine equations.Techniques presented will shed light on important open problems.Includes
叢書(shū)名稱(chēng)Developments in Mathematics
圖書(shū)封面Titlebook: Quadratic Diophantine Equations;  Titu Andreescu,Dorin Andrica Textbook 2015 Springer Science+Business Media New York 2015 Pell‘s equation.
描述.This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory..The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis..
出版日期Textbook 2015
關(guān)鍵詞Pell‘s equation; algebra; diophantine equations; number theory
版次1
doihttps://doi.org/10.1007/978-0-387-54109-9
isbn_softcover978-1-4939-3880-3
isbn_ebook978-0-387-54109-9Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

書(shū)目名稱(chēng)Quadratic Diophantine Equations影響因子(影響力)




書(shū)目名稱(chēng)Quadratic Diophantine Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Quadratic Diophantine Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Quadratic Diophantine Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Quadratic Diophantine Equations被引頻次




書(shū)目名稱(chēng)Quadratic Diophantine Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Quadratic Diophantine Equations年度引用




書(shū)目名稱(chēng)Quadratic Diophantine Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Quadratic Diophantine Equations讀者反饋




書(shū)目名稱(chēng)Quadratic Diophantine Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:32 | 只看該作者
1389-2177 esented will shed light on important open problems.Includes .This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases
地板
發(fā)表于 2025-3-22 05:36:30 | 只看該作者
Textbook 2015hniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems and applications. Moreover, the exposit
5#
發(fā)表于 2025-3-22 12:28:34 | 只看該作者
Why Quadratic Diophantine Equations?,In order to motivate the study of quadratic type equations, in this chapter we present several problems from various mathematical disciplines leading to such equations. The diversity of the arguments to follow underlines the importance of this subject.
6#
發(fā)表于 2025-3-22 15:44:33 | 只看該作者
7#
發(fā)表于 2025-3-22 19:11:50 | 只看該作者
,General Pell’s Equation,This chapter gives the general theory and useful algorithms to find positive integer solutions (.,?.) to general Pell’s equation (4.1.1), where . is a nonsquare positive integer, and . a nonzero integer.
8#
發(fā)表于 2025-3-23 00:29:44 | 只看該作者
,Equations Reducible to Pell’s Type Equations,An interesting problem concerning the Pell’s equation . is to study when the second component of a solution (.,?.) is a perfect square.
9#
發(fā)表于 2025-3-23 04:02:21 | 只看該作者
Diophantine Representations of Some Sequences,In 1900, David Hilbert asked for an algorithm to decide whether a given Diophantine equation is solvable or not and put this problem tenth in his famous list of 23.
10#
發(fā)表于 2025-3-23 05:38:07 | 只看該作者
Other Applications,In [122] and [123] it is proven that there are infinitely many positive integers . such that 2. + 1 and 3. + 1 are both perfect squares. The proof relies on the theory of general Pell’s equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 19:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安远县| 普兰县| 沂水县| 宁河县| 竹山县| 绥德县| 公安县| 临安市| 文成县| 平阳县| 钟山县| 济源市| 昌邑市| 永宁县| 临夏县| 西和县| 洪湖市| 紫阳县| 博乐市| 安化县| 仙居县| 双鸭山市| 慈溪市| 江安县| 即墨市| 五台县| 庆云县| 泗阳县| 裕民县| 合作市| 故城县| 南乐县| 同心县| 芷江| 汽车| 弋阳县| 翁源县| 资阳市| 大姚县| 永善县| 锡林郭勒盟|