找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Numbers, p-adic Analysis, and Zeta-Functions; Neal Koblitz Textbook 1984Latest edition Springer Science+Business Media New York 198

[復(fù)制鏈接]
查看: 51543|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions
編輯Neal Koblitz
視頻videohttp://file.papertrans.cn/765/764608/764608.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: p-adic Numbers, p-adic Analysis, and Zeta-Functions;  Neal Koblitz Textbook 1984Latest edition Springer Science+Business Media New York 198
描述Neal Koblitz was a student of Nicholas M. Katz, under whom he received his Ph.D. in mathematics at Princeton in 1974. He spent the year 1974 -75 and the spring semester 1978 in Moscow, where he did research in p -adic analysis and also translated Yu. I. Manin‘s "Course in Mathematical Logic" (GTM 53). He taught at Harvard from 1975 to 1979, and since 1979 has been at the University of Washington in Seattle. He has published papers in number theory, algebraic geometry, and p-adic analysis, and he is the author of "p-adic Analysis: A Short Course on Recent Work" (Cambridge University Press and GTM 97: "Introduction to Elliptic Curves and Modular Forms (Springer-Verlag).
出版日期Textbook 1984Latest edition
關(guān)鍵詞Algebra; Analysis; Functions; Numbers; Zetafunktion; calculus; finite field; number theory; p-adische Analys
版次2
doihttps://doi.org/10.1007/978-1-4612-1112-9
isbn_softcover978-1-4612-7014-0
isbn_ebook978-1-4612-1112-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions影響因子(影響力)




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions影響因子(影響力)學(xué)科排名




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions網(wǎng)絡(luò)公開度




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions被引頻次




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions被引頻次學(xué)科排名




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions年度引用




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions年度引用學(xué)科排名




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions讀者反饋




書目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:05:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:34 | 只看該作者
978-1-4612-7014-0Springer Science+Business Media New York 1984
6#
發(fā)表于 2025-3-22 14:55:25 | 只看該作者
7#
發(fā)表于 2025-3-22 19:04:21 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:48 | 只看該作者
-adic numbers,If . is a nonempty set, a distance, or ., on . is a function . from pairs of elements (., .) of . to the nonnegative real numbers such that.A set . together with a metric . is called a .. The same set . can give rise to many different metric spaces (.), as we’ll soon see.
9#
發(fā)表于 2025-3-23 04:54:11 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:58 | 只看該作者
,Building up Ω,In what follows, we’ll have to assume familiarity with a few basic notions concerning algebraic extensions of fields. It would take us too far afield to review all the proofs; for a complete and readable treatment, see Lang’s . or Herstein’s ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 抚远县| 柞水县| 莎车县| 新泰市| 伊川县| 日照市| 蒙山县| 恭城| 渭南市| 庆城县| 文登市| 高阳县| 广德县| 西盟| 郧西县| 丰镇市| 堆龙德庆县| 潞西市| 通化市| 廉江市| 左云县| 西平县| 仁寿县| 喀什市| 疏勒县| 双鸭山市| 张家口市| 天门市| 渝北区| 宾川县| 东安县| 南部县| 武冈市| 阳东县| 乐山市| 德阳市| 西安市| 孝感市| 龙岩市| 惠安县|