找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Numbers; An Introduction Fernando Q. Gouvêa Textbook 19931st edition Springer-Verlag Berlin Heidelberg 1993 Rack.calculus.completion

[復制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 10:45:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:45 | 只看該作者
,Apéritif,t arise merely from some desire to generalize, but rather from several concrete situations involving problems from algebra and number theory. The new “metrics” on ? will be each connected to a certain prime, and they will “codify” a great deal of arithmetic information related to that prime. The goa
13#
發(fā)表于 2025-3-23 22:01:42 | 只看該作者
14#
發(fā)表于 2025-3-23 22:36:27 | 只看該作者
15#
發(fā)表于 2025-3-24 04:25:46 | 只看該作者
,Elementary Analysis in ?,,d it is complete with respect to the metric given by that absolute value. In fact, the similarities go deeper: ? and the various ?., are completions of ?, hence contain ? as a dense subset; they are all locally compact; none of them are algebraically closed.
16#
發(fā)表于 2025-3-24 07:05:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:39:28 | 只看該作者
,Analysis in ?,,his book, we try to touch on a few remarkable points: the theory of Newton polygons, the .-adic Weierstrass Preparation Theorem, the description of entire functions. As usual, the first step is to re-appropriate all the results we obtained earlier. We then go on to consider how to extend the .-adic
18#
發(fā)表于 2025-3-24 16:29:54 | 只看該作者
Introduction,rners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the .-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis.
19#
發(fā)表于 2025-3-24 20:58:08 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:22 | 只看該作者
0172-5939 ck. Those who will later specialize in number theory,algebraic geometry, and related subjects will benefit moredirectly, but all mathematics students can enjoy the book.978-3-662-22278-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
延寿县| 德兴市| 奉节县| 南投县| 桦南县| 古蔺县| 苏尼特右旗| 青浦区| 宁化县| 信丰县| 翁源县| 当雄县| 仁布县| 兴业县| 龙胜| 江都市| 蒙自县| 宁海县| 河南省| 温州市| 梨树县| 都匀市| 油尖旺区| 罗源县| 改则县| 白城市| 仁寿县| 榕江县| 秦皇岛市| 柳江县| 榆社县| 玉树县| 都江堰市| 唐河县| 宁乡县| 永春县| 华亭县| 婺源县| 灵璧县| 石城县| 修武县|