找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects; Bhargav Bhatt,Martin Olsson Conference proceedings 2023 The Editor(s) (i

[復(fù)制鏈接]
查看: 31370|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:23:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects
編輯Bhargav Bhatt,Martin Olsson
視頻videohttp://file.papertrans.cn/765/764604/764604.mp4
概述Explores recent developments in p-adic Hodge theory.Features field-advancing research articles.Contains surveys of recent developments
叢書名稱Simons Symposia
圖書封面Titlebook: p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects;  Bhargav Bhatt,Martin Olsson Conference proceedings 2023 The Editor(s) (i
描述This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on .p.-adic Hodge theory. This symposium was focused on recent developments in .p.-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.
出版日期Conference proceedings 2023
關(guān)鍵詞Riemann-Hilbert Functors; Shtuka Spaces; Diophantine geometry; Relative Hodge-Tate Spectral Sequence; Fr
版次1
doihttps://doi.org/10.1007/978-3-031-21550-6
isbn_softcover978-3-031-21552-0
isbn_ebook978-3-031-21550-6Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects影響因子(影響力)




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects影響因子(影響力)學(xué)科排名




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects網(wǎng)絡(luò)公開(kāi)度




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects被引頻次




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects被引頻次學(xué)科排名




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects年度引用




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects年度引用學(xué)科排名




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects讀者反饋




書目名稱p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:14:06 | 只看該作者
地板
發(fā)表于 2025-3-22 06:45:04 | 只看該作者
5#
發(fā)表于 2025-3-22 09:41:15 | 只看該作者
6#
發(fā)表于 2025-3-22 15:36:56 | 只看該作者
7#
發(fā)表于 2025-3-22 17:39:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:50:33 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:29 | 只看該作者
p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects978-3-031-21550-6Series ISSN 2365-9564 Series E-ISSN 2365-9572
10#
發(fā)表于 2025-3-23 08:05:49 | 只看該作者
Twisted Differential Operators and ,-Crystals,, as modules endowed with some kind of stratification, it allows us to associate a module on the ring of twisted differential operators to any .-crystal. For simplicity, we explain here only the one dimensional case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长葛市| 宿松县| 天柱县| 延庆县| 克东县| 正安县| 洛南县| 临朐县| 沙坪坝区| 报价| 县级市| 牙克石市| 扎囊县| 古浪县| 泸西县| 孟津县| 天峻县| 澄江县| 安岳县| 平定县| 苍南县| 清流县| 昌乐县| 望奎县| 咸丰县| 鸡东县| 巫溪县| 商丘市| 化州市| 上林县| 江口县| 辽源市| 泰安市| 乐至县| 商洛市| 政和县| 罗定市| 皮山县| 阿巴嘎旗| 南雄市| 尉犁县|