找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of Fifth Doctoral Symposium on Computational Intelligence; DoSCI 2024, Volume 3 Abhishek Swaroop,Vineet Kansal,Aboul Ella Hassa

[復制鏈接]
樓主: 會議記錄
21#
發(fā)表于 2025-3-25 05:55:12 | 只看該作者
,Toxicity Detection and?Classification in?Arabic Text,It achieved high .1-scores, indicating that it is effective in spite of all challenges presented by the corpus. From this study we conclude that natural language processing has proven its efficacy in identifying toxic Arabic language content. Furthermore, it paves the way to develop systems that detoxify Arabic text.
22#
發(fā)表于 2025-3-25 10:53:49 | 只看該作者
23#
發(fā)表于 2025-3-25 12:42:12 | 只看該作者
24#
發(fā)表于 2025-3-25 17:56:24 | 只看該作者
A Critical Assessment of Task Scheduling Algorithms in Cloud Computing: A Comparative Approach,e, the CloudSim 3.0.3 toolbox is used to simulate these methods under varying workload conditions. Additionally, a collection of metrics is computed, and these measures are used to compare and evaluate the aforementioned algorithms.
25#
發(fā)表于 2025-3-25 21:51:09 | 只看該作者
EnviroWatch: A Comprehensive Environmental Monitoring Web Frame and Cleanup Coordination System Using CNN,er to identify and classify garbage. Government bodies and NGOs can access the platform to gather crucial data and coordinate cleanup initiatives, fostering a collaborative effort toward environmental well-being.
26#
發(fā)表于 2025-3-26 02:55:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:32 | 只看該作者
Enhancing Suspect Identification: Automated Composite Sketch Generation and Recognition,ques use computer vision algorithms—deep learning models to accurately capture facial features and compare them to a database of known faces. This review examines the latest techniques for creating and recognizing facial images, investigating their applications, challenges, and potential future developments.
28#
發(fā)表于 2025-3-26 09:33:35 | 只看該作者
29#
發(fā)表于 2025-3-26 13:36:22 | 只看該作者
30#
發(fā)表于 2025-3-26 19:16:05 | 只看該作者
,Machine Learning-Based Comprehensive Framework for?Stock Prediction,in market size forecasting. Through preprocessing and feature extraction, the LSTM model captures a series of economic time series. This study focuses on hyperparameter optimization and external parameters, which significantly improve the accuracy of the model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安宁市| 自贡市| 佛冈县| 漳浦县| 兴隆县| 东乌珠穆沁旗| 台湾省| 鸡泽县| 莎车县| 宜城市| 建湖县| 云林县| 九龙县| 漠河县| 马尔康县| 凤冈县| 都昌县| 澜沧| 余姚市| 祥云县| 武夷山市| 北京市| 邹城市| 富川| 醴陵市| 朝阳县| 资源县| 山阴县| 靖安县| 满洲里市| 法库县| 出国| 靖江市| 鹿邑县| 晋宁县| 乳山市| 叙永县| 兰西县| 衢州市| 靖安县| 曲阳县|