找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Principal Symbol Calculus on Contact Manifolds; Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin Book 2024 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 46332|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:48:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds
編輯Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin
視頻videohttp://file.papertrans.cn/765/764492/764492.mp4
概述the first complete treatment of Connes’ trace theorem on contact manifolds.proves the equivariance of the principal symbol on Heisenberg groups.introduces a natural measure on sub-Riemannian manifolds
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Principal Symbol Calculus on Contact Manifolds;  Yuri Kordyukov,Fedor Sukochev,Dmitriy Zanin Book 2024 The Editor(s) (if applicable) and Th
描述.This book develops a C*-algebraic approach to the notion of principal symbol on Heisenberg groups and, using the fact that contact manifolds are locally modeled by Heisenberg groups, on compact contact manifolds. Applying abstract theorems due to Lord, Sukochev, Zanin and McDonald, a principal symbol on the Heisenberg group is introduced as a homomorphism of C*-algebras. This leads to a version of Connes’ trace theorem for Heisenberg groups, followed by a proof of the equivariant behavior of the principal symbol under Heisenberg diffeomorphisms. Using this equivariance and the authors’ globalization theorem, techniques are developed which enable further extensions to arbitrary stratified Lie groups and, as a consequence, the notion of a principal symbol on compact contact manifolds is described via a patching process. Finally, the Connes trace formula on compact contact sub-Riemannian manifolds is established and a spectrally correct version of the sub-Riemannian volume is defined (different from Popp‘s measure)...The book is aimed at graduate students and researchers working in spectral theory, Heisenberg analysis, operator algebras and noncommutative geometry..
出版日期Book 2024
關(guān)鍵詞Principal symbol; Contact manifold; Heisenberg group; Equivariance; Connes Trace Theorem
版次1
doihttps://doi.org/10.1007/978-3-031-69926-9
isbn_softcover978-3-031-69925-2
isbn_ebook978-3-031-69926-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds影響因子(影響力)




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds被引頻次




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds年度引用




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds讀者反饋




書(shū)目名稱(chēng)Principal Symbol Calculus on Contact Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:30 | 只看該作者
第164492主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:15:06 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:02:30 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:09:31 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:55:24 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:03:53 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:45:39 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:31:33 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:55:18 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀宁县| 嘉峪关市| 通州市| 六盘水市| 竹北市| 临潭县| 辽宁省| 双城市| 盐池县| 鲁甸县| 黔江区| 孟津县| 临颍县| 阜城县| 米脂县| 大冶市| 新闻| 合山市| 凉城县| 盐池县| 虹口区| 塔城市| 闽清县| 安岳县| 西乡县| 北票市| 佛山市| 英德市| 江口县| 徐水县| 宿迁市| 信宜市| 绵竹市| 普定县| 富宁县| 和静县| 涟水县| 永定县| 嘉祥县| 于田县| 张家口市|