找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probability in Banach Spaces, 9; J?rgen Hoffmann-J?rgensen,James Kuelbs,Michael B. Conference proceedings 1994 Springer Science+Business

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 12:10:20 | 只看該作者
Sharp Exponential Inequalities for the Martingales in the 2-Smooth Banach Spaces and Applications to “Scalarizing” Decouplingqualities in terms of the sums of conditional moments of the martingale differences, rather than in terms of the .. norm of such sums. The results are believed to be new even in the particular case of the Hilbert spaces.
12#
發(fā)表于 2025-3-23 17:36:52 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:40 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4612-0253-0Ergodic theory; Estimator; Gaussian measure; Law of large numbers; Likelihood; Martingale; Median; Random v
15#
發(fā)表于 2025-3-24 04:36:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:25 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:33:33 | 只看該作者
On the Central Limit Theorem for Multiparameter Stochastic Processesple paths are right-continuous and have left-limits. These criteria have been applied by Bezandry and Fernique, Bloznelis and Paulauskas to prove the central limit theorem (CLT) in the Skorohod space .[0,1].
19#
發(fā)表于 2025-3-24 22:43:07 | 只看該作者
A Weighted Central Limit Theorem for a Function-Indexed Sum with Random Point Masses for a functional central limit theorem for weighted sums of the form . where . = (ξ..,j = ., …. = 1, 2, …) is a triangular array of row-independent random variables, and X., …, .. are sampled iid and independent of . from P.
20#
發(fā)表于 2025-3-25 00:50:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈密市| 清涧县| 扬中市| 英超| 通海县| 渭源县| 保定市| 七台河市| 蒙城县| 顺昌县| 茶陵县| 洛扎县| 格尔木市| 湟源县| 兴和县| 饶河县| 花莲县| 夏邑县| 襄汾县| 邛崃市| 白城市| 陇川县| 潞城市| 平原县| 嵊泗县| 吉隆县| 元谋县| 洪湖市| 即墨市| 汨罗市| 理塘县| 湄潭县| 博客| 广昌县| 翼城县| 永修县| 彰武县| 绍兴市| 潍坊市| 凌海市| 丹阳市|